

Abdul Maye

©2019 CITGO Petroleum Corporation

Abdul Maye

- CITGO Sr. Product Specialist
- BS, Chemistry
- 15 Years Experience in Lubricants
- STLE Certified
 - Oil Monitoring Analyst I

Gas Engine Oil Agenda

North American Market

- Core Consumers
- Major OEMs

Gas Engine Oil Basics

- Contrast with HDEO
- Four-Stroke
- Two-Stroke

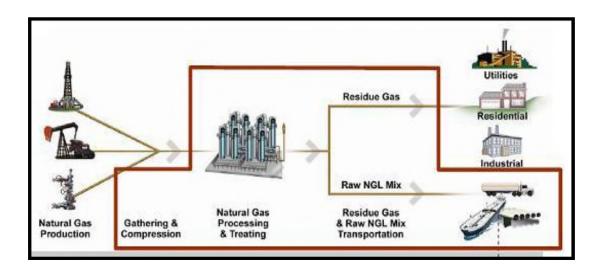
Important Lubricant-related Issues
CITGO NGEO Product Line
CITGO LubeAlert

NGEO Application – Wellhead to Consumers

Application

Wellhead Gathering
Gas Processing Plants
Pipeline Compressor Stations
Industrial Power Plants
Bio Gas / Landfill

Typical Natural Gas Engine Types


Small 4-Stroke, Small 2-Stroke

Large 4-Stroke

Large 2-Stroke, Large 4-Stroke

4-Stroke, Some Co-Generation Power

Large 4-Stroke

Natural Gas Engine Users

> Oil & Gas Industry - 80%

- Natural Gas Transmission & Gathering
- Oil Well Pumping

> Agricultural Industry - 10%

- Irrigation Pumping
- Dairies

Commercial - 5%

• Power & Heat Generation (airport, hotels, hospitals, casinos, amusement parks, factories, mines, glass factories, paper mills and other industrial facilities)

Municipal - 5%

- Water Supply Pumping
- Water Treatment
- Landfills

Gaseous Fuels

Natural Gas

- Dry 99% methane
- Wet also has ethane, propane, butane, longer chain hydrocarbons or H₂O
- Sweet no hydrogen sulfide, may have ethane
- Sour contains sulfur compounds

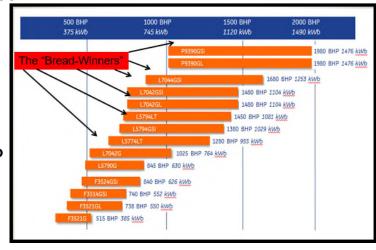
Biogas

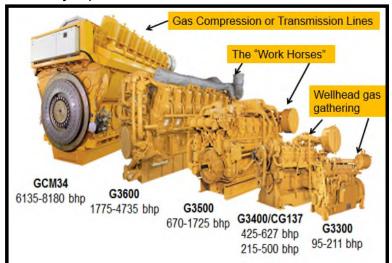
- Biogas mixture of methane, carbon dioxide, trace amount of other gases
- Landfill 50% methane, silicon, chlorofluorocarbons (CFC) corrosive acids
- Sewage 60% methane, hydrogen sulfide

Major Original Equipment Manufacturers

Caterpillar (about 50% of NA market)

➤ GE Power (Waukesha, Jenbacher, Cooper Bessemer, Superior, Ajax)


(Waukesha has about 25% of market)


> Cummins

Others

- Deutz Power Systems
- Niigata
- MDE
- Rolls Royce
- Wartsilla
- Clark

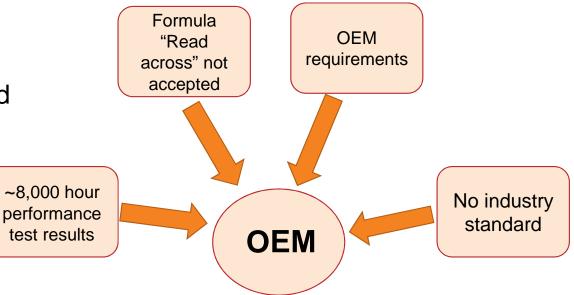
Waukesha Product Portfolio

Caterpillar Gas Compression Offerings

Typical Gas Engine Parameters

Manufacturer	Caterpillar	Waukesha	Jenbacher	Ingersoll-Rand
Engine Model	G3516	VHP L7044	Type 6	KVR
Cycle	4-T	4-T	4-T	2-T
Ignition	Spark	Spark	Spark	Spark
Breathing	Turbo-	Turbo-	Turbo-	Turbo-
Cylinders	16	12	16	16
Bore, mm (in)	170 (6.7)	238 (9.4)	190 (7.5)	432 (17)
Stroke, mm (in)	190 (7.5)	216 (8.5)	220 (8.7)	559 (22)
Displacement, L (cu in)	69 (4211)	115 (7037)	100 (6090)	1309 (79,897)
Weight, kg (K lbs)	7550 (17)	9525 (21)	23,600 (52)	140,000 (310)
Sump, L (gal)	360 (95)	720 (190)	530 (140)	7740 (2044)
Speed	1400	1200	1500	330
Power, kW (Hp)	1030 (1380)	1250 (1680)	2188 (2934)	4480 (6000)
Torque, N-m (ft-lb)	7020 (5180)	9970 (7350)	13,900 (10,270)	122K (90K)
	\$300,000 - 1,000,000+			

Stationary Natural Gas Engine Oil Field Testing


No industry oil standard

Industry relies on real world performance

 Formula "Read across" is not accepted

Performance is demonstrated by field test

Under actual operating conditions

Stationary Gas vs. Diesel Engine Lubes

Natural Gas

No industry standard

Field testing for OEM approval

Low ash or ashless oils

SAE 40 preferred by OEMs

Diesel

Industry service classifications

Field testing not required

Mid ash oils

Multi-viscosity oils preferred by OEMs

Differences Between Natural Gas vs. Diesel Engines

Natural Gas

Variable burn characteristics

Carbureted

Combustible inlet

Fixed air/fuel ratio

Compression ratio 10:1

- Coolant temperature up to ~290°F
- Flame front, ~4,500°F

Exhaust ~300°F higher than diesel

24x7 operation

Low Ash oils

Diesel

Consistent burn characteristics

Injectors

Non-combustible inlet

Variable air/fuel ratio

Compression ratio 20:1

- Coolant temperature up to ~210°F
- Flame front, ~3,500°F

Intermittent operation

Mid Ash oils

Gas Engine Design

- Engines operating with gaseous fuels
- This is what makes them different

Reciprocating Internal Combustion Engines (RICE)

Sizes range from ~100 to ~10,000 Horsepower

- > Two or four stroke cycle
 - 2-T: older, larger, medium-speed engines
 - 4-T: newer, smaller, high-speed engines
- > Spark ignited
 - Or ignited with small injection of diesel fuel (dual-fuel)
- > May or may not have exhaust catalyst
 - If so, phosphorous in lubricant is limited

Common Concerns - Gas Engines

❖ Safety

❖ Emissions

- Necessary to stay in business
- Target of increasing legislative pressure

❖ Reliability

- Generate revenue
- Minimize down-time
- · Lives could depend on it

Durability

- Minimize maintenance cost
- Extend Time Between Overhaul
- Extend Drain Interval
- Lengthen profitable life of asset

Stationary Natural Gas Engines

High Load

 Severe oil stress Remote Operation

 Reliability essential Variety of Engine Types

Flexible products

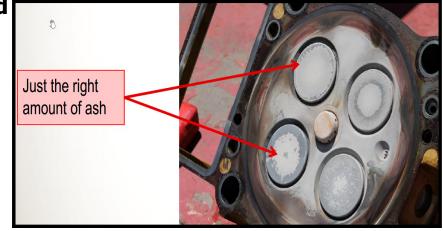
Fuel Variation

- Gas composition
- Btu content

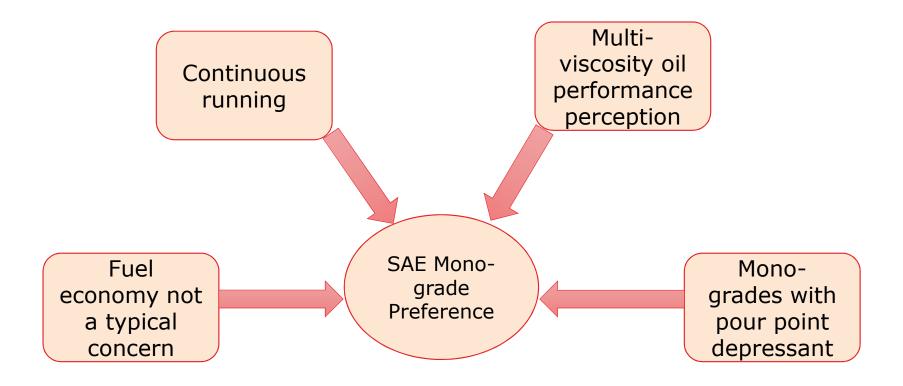
Sulfated Ash

Segmentation by Ash (Sulphated ASH = SASH)

■ <u>Ashless</u> < 0.1 SASH Older 2-stroke


■ Low ash $0.1 - 0.5 \text{ SASH}(\rightarrow 0.6)$ Most common

■ Medium ash 0.5 – 1.0 SASH High sulfur gas / some OEM's


■ High ash > 1.0 SASH Very high sulfur gas

Ash residue left after oil is burned

- Detergent dispersant additives contribute to SASH
- Dry film lubrication for valves
- More not necessarily better

Stationary Natural Gas Engine and SAE Grades

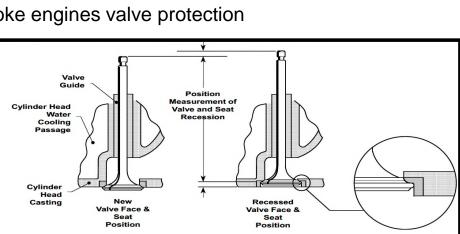
Engine Oil Viscosity Grades

Monograde

High temperature / high shear viscosity requirements at 150°C

Defined viscosity range at 100°C

Multi-Grade


"Flatter" viscosity temperature relationship

"W" grade requirements: low temperature cranking, pumping

Defined viscosity range at 100°C

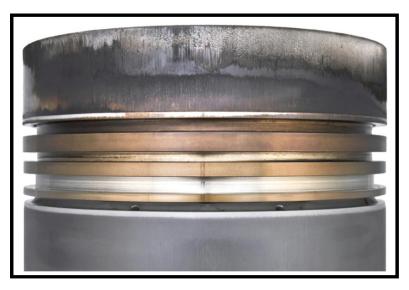
Natural Gas Engine Oil Consideration

- > Oil formulation must control nitration effects primarily in 4-stroke engine
 - Oil viscosity control
 - Deposit formation prevention
- > Ash content
 - Ashless for two stroke engine port deposit control
 - Ash for four stroke engines valve protection

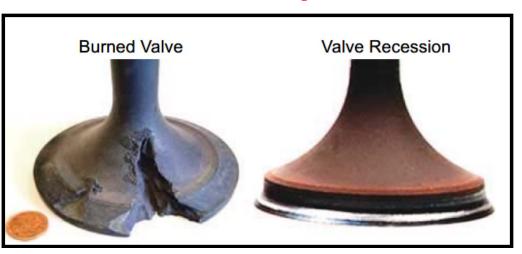
No. 3L Intake Ports

Port Plugging

No. 1L Intake Ports


Valve Position Measurement

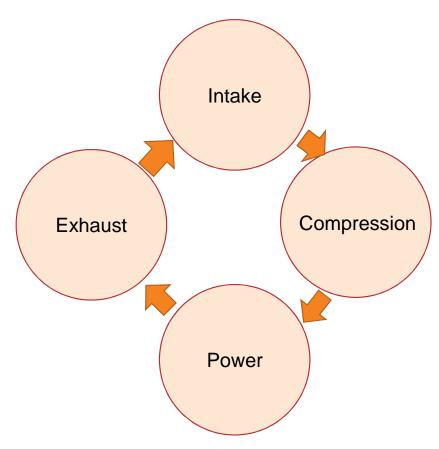
Natural Gas Engine Oil Consideration


- > Emission catalyst systems limit the amount of certain oil additives
 - Zinc and phosphorous limits
- ➤ Oil must have the capacity to absorb acids formed during combustion
 - TBN reserve
- Correct viscosity grade
 - Majority used is SAE 40
 - SAE 30 and multi-grades also available

4-Stroke Key Lubricant Performance Properties

- Oxidation Control
- Nitration Control
- ➤ Minimize Valve Recession
- Prevent Rust and Corrosion
- ➤ Keep Engine Parts Clean

Piston


Acid Attack

4-Stroke Stationary Natural Gas Engine

- > Four Stroke
- Up to 7,000 hp
- Medium to high speed (750 1,500)
- Naturally aspirated or turbocharged
- Intake and exhaust valves

Valve

Natural Gas Engine Problems

> Unique combustion chemistry

- Gaseous fuel fully mixed flame
- High combustion temperature (exhaust ~590°C vs ~470°C diesel)

> High oil oxidation and nitration

Anti-oxidant selection is critical

> Corrosion

Oxidation acids, sulfur and other contaminants in sour gases

> Deposits

- Varnish (high temperature deposits)
- Siloxane (silicon compounds) from landfill gas

Water Formation

Higher than liquid hydrogen fuel

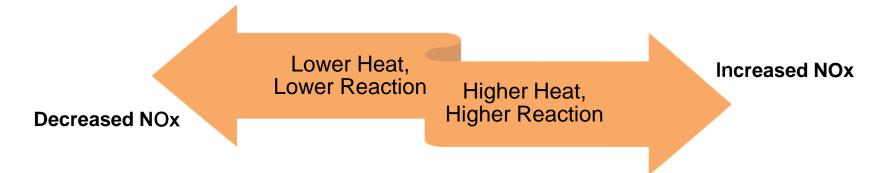
No valve lubrication from liquid hydrocarbon fuel

- Rely on ash from burned engines oil to lubricate valves
- Lubricating oil SASH is an important parameter

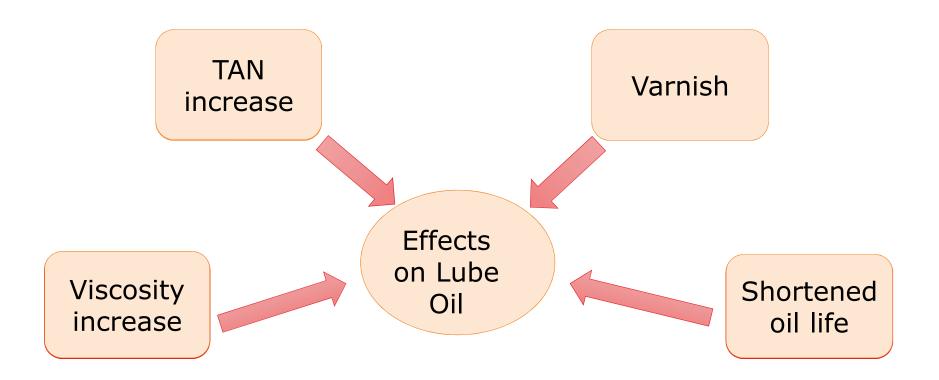
Air Fuel Ratio

- Rich burn (rich exhaust)
 - AFR of 15:1
 - More fuel for approximately the same amount of oxygen
- > Result
 - Higher fuel consumption
 - Additional power
 - Excess fuel remaining in the exhaust
 - Lower combustion temperature
 - Less NOx

- > Lean burn (lean exhaust)
 - AFR 17.00 & 18.00:1
 - Less fuel for approximately the same amount of oxygen


> Result

- Excess oxygen in combustion chamber
- Lower fuel consumption
- Loss of power
- Increase in NO


Nitration and Combustion Temperature

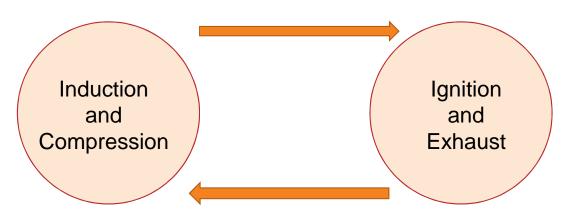
Nitration

- > NOx formation is dependent on time and temperature
- > Maximum NOx occurs when sufficient heat in the combustion chamber reacts with oxygen
- Nitration peaks when AFR is between 18.00 and 19.00:1, just right of stoichiometric
- > NOx combines with lube oil
 - Blow by gases
 - Forms nitration compounds
 - Leads to oil degradation


Nitration in Natural Gas Engines

2-Stroke Key Lubricant Performance Properties

- **➤ Minimize Port and Chamber Deposits**
- > Keep Engine Parts Clean
- > Reduce Wear
- > Prevent Rust and Corrosion



Port Plugging

2-Stroke Stationary Natural Gas Engine

- ➤ Typical Two Stroke Engines
- Up to 15,000 hp
- Slow speed (<500 rpm)
- Naturally aspirated and turbocharged
- Requires ashless engine oils
- Intake and exhaust ports
- Small units used in gas gathering

2-Stroke Engine

Current CITGO Pacemaker GEO 4-Stroke Products

PRODUCT	ASH	GAS	APPLICATIONS
Pacemaker GEO 1900XL	0.5	Sweet, Sour	High Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 1700	0.45	Sweet, Sour	High Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 1600	0.5	Sweet, Sour	Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 800	0.46	Sweet, Sour	High Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO LFG LA	0.55	Sour, LFG, Biogas	High Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 700	0.9	Sweet, Sour	High Oxidation Conditions, Extended Oil Life Capable
Pacemaker GEO 15SL	0.45	Sweet, LP	Irrigation Pump Service, Converted Gasoline Engines, Extended Oil Life Capable

New CITGO Pacemaker GEO 4-Stroke Products

PRODUCT	ASH	GAS	APPLICATIONS
Pacemaker GEO 1900XL	0.5	Sweet, Sour	High Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 1600	0.5	Sweet, Sour	Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 1400	0.5	Sweet, Sour	Nitration or Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO LFG LA	0.55	Sour, LFG, Biogas	High Oxidation Conditions, Extended Oil Life Capable, Catalyst Compatible
Pacemaker GEO 700	0.9	Sweet, Sour	High Oxidation Conditions, Extended Oil Life Capable
Pacemaker GEO 15SL	0.45	Sweet, LP	Irrigation Pump Service, Converted Gasoline Engines, Extended Oil Life Capable

Current CITGO Pacemaker GEO 2-Stroke Products

PRODUCT	ASH	GAS	APPLICATIONS
Pacemaker GEO 1200	Ashless	Sweet	Extended Oil Life Capable, 4-Stroke Applications that Require <u>Ashless</u> GEO
Pacemaker GEO 1000	Ashless	Sweet	Extended Oil Life Capable

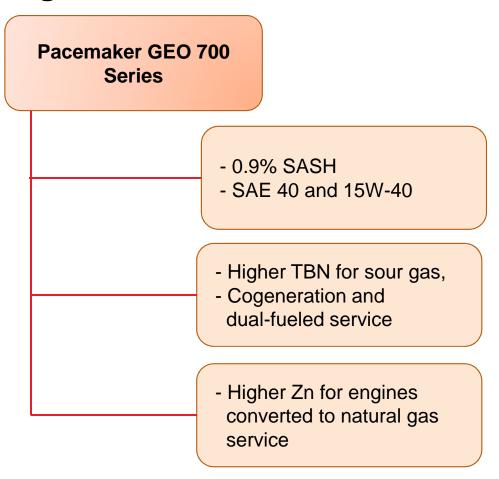
New CITGO Pacemaker GEO 2-Stroke Products

PRODUCT	ASH	GAS	APPLICATIONS
Pacemaker GEO 1000	Ashless	Sweet	Extended Oil Life Capable, 4-Stroke Applications that Require <u>Ashless</u> GEO

Low Ash Gas Engine Oil

Pacemaker GEO 1900XL Series

- Unsurpassed performance in severe nitration & oxidation application
- Enhanced extended drain capability
- SAE 30, 40 and 15W-40
- Low pour point


Pacemaker GEO 1600 Series

- Enhanced extended drain capability
- Oxidation and nitration condition
- SAE 30, 40 and 15W-40
- Low pour point

Pacemaker GEO 1400 Series

- · Enhanced extended drain capability
- Oxidation and nitration condition
- SAE 30, 40 and 15W-40
- Low pour point

Mid Ash Gas Engine Oil

Ashless Gas Engine Oil

Pacemaker GEO 1000 Series

- Premium Performance
- Extended oil life capable
- 4-cycle applications that require ashless GEO
- Uncommon SAE 30/40, 15W-40 and SAE 40
- Low pour point

Specialty Gas Engine Oil

Pacemaker LFG LA 40

 New generation low ash gas engine oil for landfill and digester gas service


Pacemaker GEO 15SL

- Full synthetic, high Zn for engines converted to natural gas service

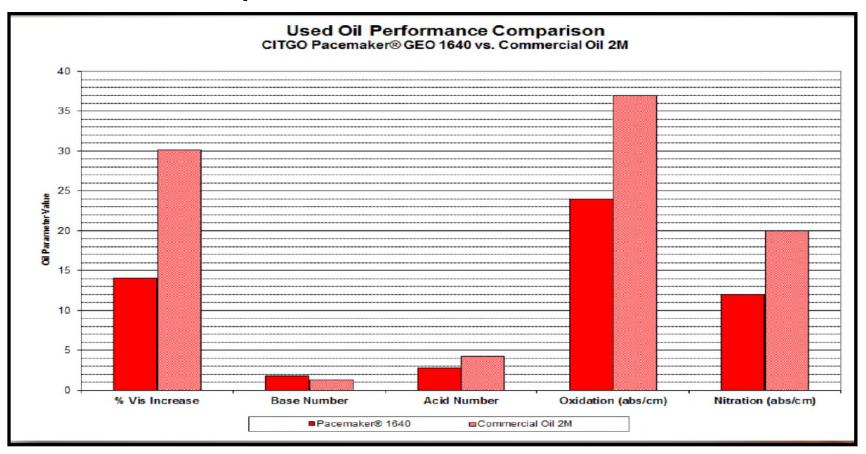
CITGO Pacemaker GEO 1940XL on CAT G16CM34 Approval


Proof of Oil Performance

- Engine driving Ariel KBB for gas compression
- > Test completed in 2019
- ➤ Total hours on test 8,588 hours
- CITGO Pacemaker 1940XL is the first commercial lubricant in the US to obtain approval
- CAT engineers endorsed the use of CITGO Pacemaker 1940XL for use in its CAT G16CM34

CAT G16CM34 Engine Inspection Photos

Performance comparison


CITGO
Pacemaker
GEO 1640
vs.
Commercial
Oil 2M

- Back to back test in the same Caterpillar G3516 TALE
 - 8,584 hours: CITGO Pacemaker GEO 1640
 - 8,574 hours: Commercial Oil 2M
- Compression service, pipeline quality gas
- 85 90% engine load during test
- Used oil analysis over life of test
- New power assemblies at start of each test; evaluated at end of test inspections on each oil
 - Pistons, cylinder heads, rod bearing
 - Various covers and rocker arm assemblies

Comparison Summary

	CITGO Pacemaker® GEO 1640	Competitor 2M
	Cat G3516 TALE	Cat G3516 TALE
Hours	8584	8574
Average Oil Drain (hours)	2018	1712
Sludge, Merit	9.92	9.55
Ring Sticking, Merit	10	10
Piston Deposits, Demerits	69.6	75.5
Piston Top, Demerits	16.75	23.1
Fireface, Demerits	17.6	27.1

Performance comparison

Comparison Summary, Caterpillar G3516 TALE

CITGO
Pacemaker
GEO 1640
provides
improved
performance
in oil life and
engine
cleanliness

- Better viscosity control, oxidation and nitration control base retention and acid control
- Achieved ~300 hours additional oil drain life (18%) vs. Competitor Oil 2M
- Overall reduced deposits compared to Commercial Oil 2M

GEO LubeAlert Used Oil Monitoring Program

- ➤ Only available to CITGO customers
- > Reports include
 - Identification of contaminants
 - Wear metals trend analysis
 - Monitoring viscosity
 - Monitoring oxidation and nitration
 - TAN
 - % H₂O
 - E-mail notification / easy LubeAlert website use

Questions

• Please post your questions using the Q&A function.

How to Contact Us

- Lubes Answer Line
- 800-248-4684

```
-8:00 AM - 12:00 PM, 1:00 PM - 5:00 PM CT (Mon - Thurs)
```

- -8:00 AM 12:00 PM, 1:00 PM 4:30 PM CT (Fri)
- <u>lubeshelp@citgo.com</u>
 - Available 24/7

Future Webinars

November 12, 2021 Automatic Transmission Fluids

November 19, 2021 Clarion Environmental Products

December 3, 2021 ISO Cleanliness Requirements

December 17, 2021 Railroad Industry Products