

Low Viscosity HD Engine Oils and Fuel Efficiency

Steven Bowles

Sr. Product Specialist CITGO Petroleum Corp.

Low Viscosity HD Engine Oils and Fuel Efficiency

The webinar will begin in less than 10 minutes.

Steven Bowles

Sr. Product Specialist

CITGO Petroleum Corp.

Low Viscosity HD Engine Oils and Fuel Efficiency

The webinar will begin in less than 5 minutes.

Steven Bowles

Sr. Product Specialist

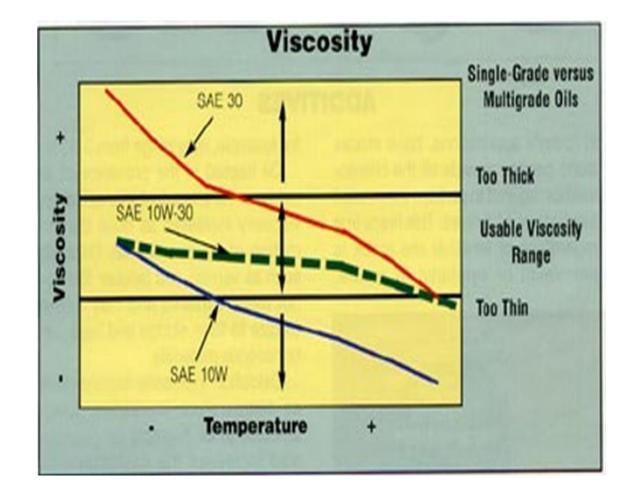
CITGO Petroleum Corp.

Steven Bowles

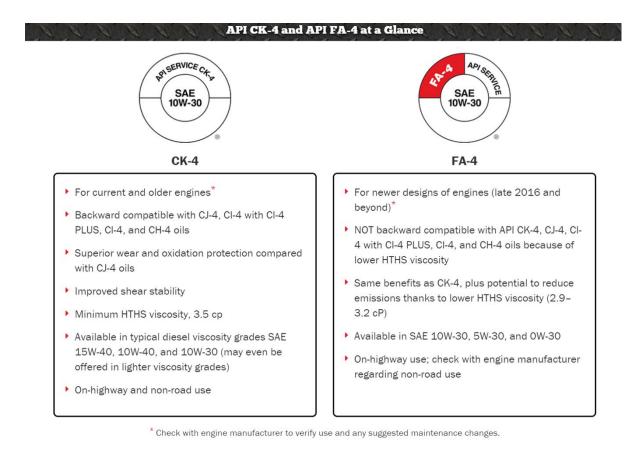
- CITGO Sr. Product Specialist
- BS, Zoology
- MS, Environmental Science
- 17 Years Experience in Lubricants
- 16 Years Experience in Laboratory Supervision/Analytical Chemistry
- STLE Certified
 - Certified Lubrication Specialist
 - Oil Monitoring Analyst I

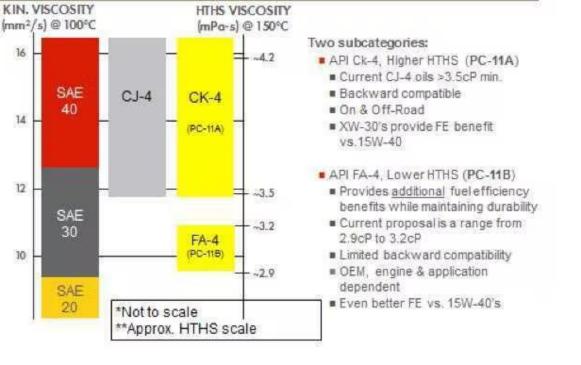
Agenda

- Engine Oil Basics Viscosity
- HDEO Viscosity Trends
- Advantages of Low Viscosity Engine Oils
- Concerns of Low Viscosity Engine Oils
- CITGO Low Viscosity HD Products
- Questions and Answers


Viscosity: the most important property

Viscosity goes down

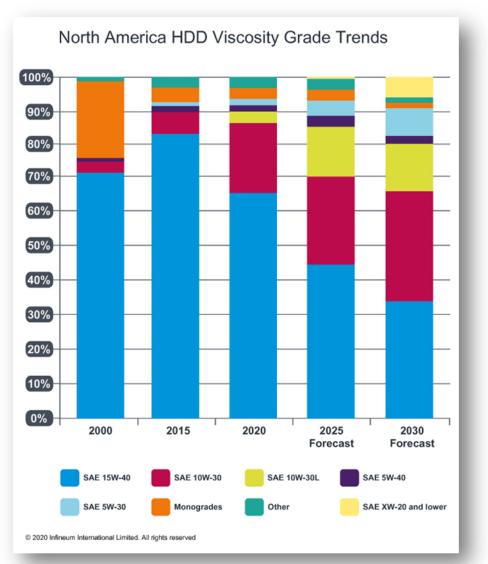

- Low enough to flow at low temperatures
- High enough to protect and perform at high temperatures



10W-30

The Role of Viscosity: SAE J300

Automotive Lubricant Viscosity Grades Engine Oils – SAE J 300SEP2015						
SAE	Low Temperatu	ure Viscosities	High-Temperature Viscosities			
Viscosity	Viscosity Grade Cranking (mPa.s) max at temp °C Pumping (mPa.s) max at temp °C		Kinematic (mm²/s)		High Shear Rate (mPa.s)	
Graue			at 100°C		at 150°C, 10/s	
			min	max	min	
0W	6200 at -35	60 000 at -40	3.8	—	—	
5W	6600 at -30	60 000 at -35	3.8	—		
📌 10W	7000 at -25	60 000 at -30	4.1	—	—	
/ 15W	7000 at -20	60 000 at -25	5.6		—	
20W	9500 at -15	60 000 at -20	5.6	—	—	
25W	13 000 at -10	60 000 at -15	9.3		—	
8			4.0	<6.1	1.7	
12			5.0	<7.1	2.0	
16			6.1	<8.2	2.3	
20	-	—	6.9	<9.3	2.6	
÷ 30	—	—	9.3	<12.5	2.9	
40	<u> </u>	_	12.5	<16.3	3.5*	
40	—	—	12.5	<16.3	3.7**	
50	<u> </u>		16.3	<21.9	3.7	
60	_	_	21.9	<26.1	3.7	


PC-11 subcategories – defined by HTHS

Special report: Final PC-11 picture emerges, next-gen oil offers improvements for engines old and new: Commercial Carrier Journal

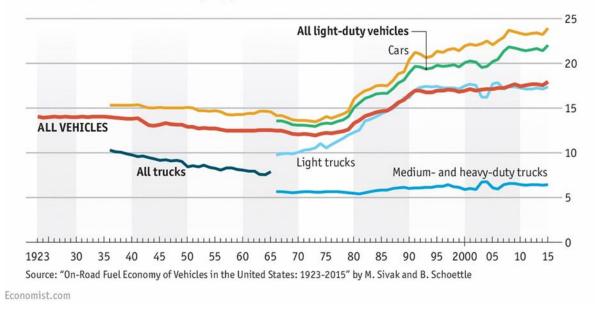
Heavy Duty Diesel Engine Oil Viscosity Trends

Viscosity grades are changing....

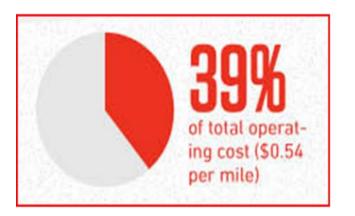
- SAE 15W-40 dominant grade, but trending down
- Lower viscosities continue to grow
- Significant growth for 10W-30, both the API CK-4 (red) and API FA-4 (Yellow)
- SAE 5W-30 continues to be a very niche grade but expected to have future growth

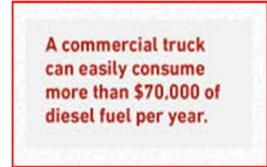
Heavy Duty Diesel Engine Oil Viscosity Trends

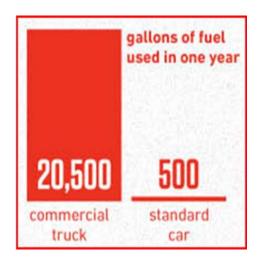
What's Driving Lower Viscosity Engine Oil Trends?


Government Green House Gas (GHG) Regulations.

- GHG regulations to lower CO2
- The only way to lower CO2 is to improve fuel economy (burn less gas/diesel)
- Lower viscosity engine oil = better fuel economy




Miles ahead


United States, on-road fuel economy, mpg

- Less Pollution lower CO2 levels
- Fuel savings going from 15W-40 to 10W-30 can result in up to 3% fuel savings



HD Engine Oil Savings Calculator

Fuel economy advantages of:

- 10W-30 CK-4 and 10W-30 FA-4
- vs CJ-4 15W-40

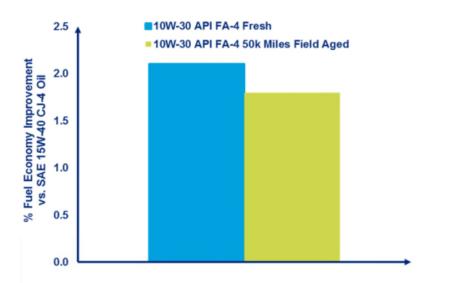
Guaranteed Efficiency Program (GEP) Fleet Report

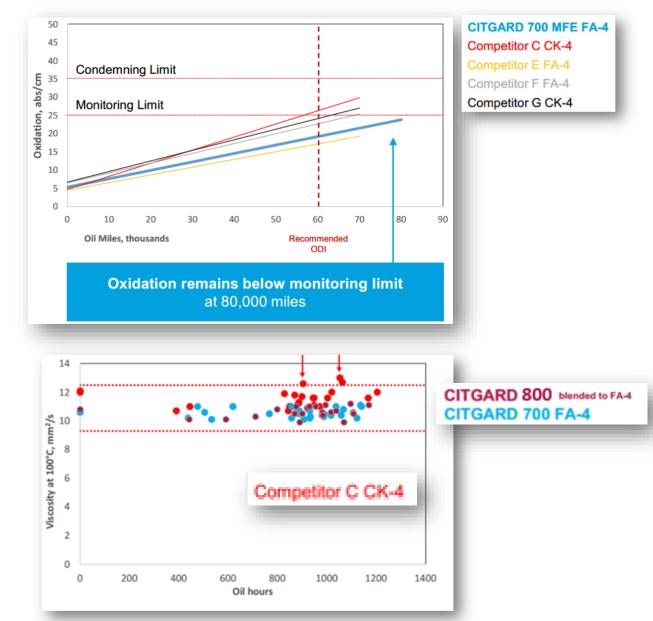
CITGO Fleet	# Power Units	FE-Results
А	40	3.2%
В	49	1.8%
С	28	1.6%
D	330	3.2%
E	494	2.2%
F	425	2.8%
Average	228	2.5%

Brundage-Bone Saves Up To 2.5% In Fuel Cost After Switching to CITGARD 700 10W-30 Heavy Duty Engine Oil

Reducing fuel costs and improving overall maintenance are top priorities for Brundage-Bone. They switched their 450-fleet operation to CITGARD 700 heavy-duty engine oil after reviewing performance insights. Independent reports from a third-party telematics provider showed a 2.5% saving in fuel costs among other benefits.

Learn more about how CITGO helped Brundage-Bone switch their fleet.


Guaranteed Efficiency Program


- Complimentary Drum of Product
- **30** Days
- ECM Devices Deployed
- Data Collected
- Report Provided
- Decision Made

QUALIFYING ENGINE OIL TESTED
CITGARD 1000 SAE 5W30
CITGARD 700 SAE 10W30 API CK-4
CITGARD 700 MFE SAE 10W30 API FA-4
CITGARD 800 SAE 10W30

Outstanding oxidation performance enables CITGARD oils to retain fuel economy throughout a drain cycle

Fuel saving technologies:

An equipment investment with extended ROI?

Changing operating conditions?

6x2 axles

Idle Reduction

Transmissions

Engine Parameters

LRR Tires

Downspeeding

FE Aerodynamics

Tractor Aerodynamics

Lubricants

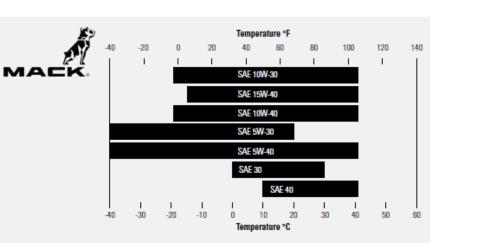
Platooning

Maintenance Trailer

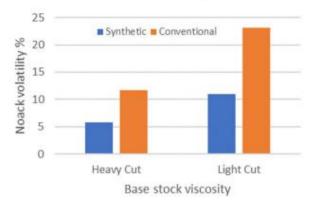
Solar

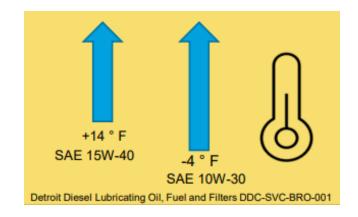
The oil is too thin!

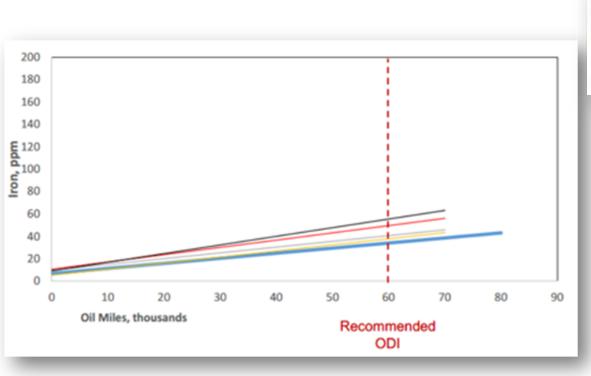
- Customers worry about the wear protection offered by the lower viscosity oils
- API CK-4/FA-4 had two new tests added to the testing program
- Modern engine oils are designed to handle the smaller, hotter running, higher output engines common today


OVERCOME "VISCOSITY FEAR SYNDROME

All major OEM's factory fill with 10W-30


OEM Diesel Engine Oil Recommendation Summary					
OEM	API CJ-4 Legacy spec and Factory Fill grade	API CK-4 (2016-present)	Service	API CK-4 OEM Oil Drains	
	CES 20081 SAE 10W-30	CES 20086 SAE 10W-30	Light (> 7.0 MPG)	75,000 (up to 100,000 with OilGuard)	
Committee			Normal (6.0 - 6.9 MPG)	60,000	
Cummins			Short Haul (5.0 - 5.9 MPG)	50,000	
			Severe (< 5.0 MPG)	25,000	
		DFS 93K222 SAE 10W-30 API FA-4	Efficient Long Haul (> 7.0 MPG)	75,000 (DD15) / 65,000 (DD13)	
Detroit Dissel	DFS 93K218		Long Haul (> 6.0 MPG)	60,000 (DD15) / 55,000 (DD13)	
Detroit Diesel	SAE 10W-30		Short Haul (5.1-5.9 MPG)	45,000 (DD15) / 40,000 (DD13)	
			Severe (< 5.0 MPG)	35,000	
		Mack EOS-4.5 / Volvo VDS-4.5 SAE 10W-30	Normal Duty(> 6.0 MPG)	55,000**	
Mack/ Volvo	Mack EO-O PP / Volvo VDS-4 SAE 10W-30		Heavy Duty (5.0 - 5.9 MPG)	40,000**	
			Severe Duty (<5.0 MPG)	30,000	
Caterpillar	ECF 3 SAE 10W-30 and SAE 15W-40	API CK-41 SAE 10W-30 and SAE 15W-40		Application Specific	
	API CJ-4 SAE 10W-30	API CK-4 SAE 10W-30	Light (> 6.5 MPG)	50,000 (up to 75,000 with oil sampling)	
Navistar			Moderate (5.5 - 6.5 MPG)	30,000	
			Severe (< 5.5 MPG)	20,000	
		API CK-4 SAE 10W-30	Normal / Line Haul, <20% Idle	75,000	
PACCAR	API CJ-4 SAE 10W-30		Normal / Line Haul, > 20% Idle	50,000	
	ONE TOTAG		Severe / Vocational	30,000	
GM (Duramax 6.6L)	API CJ-4 SAE 10W-30	API CK-4 SAE 10W-30		7,500**	
Ford (Powerstroke 6.7L)	WSS M2C171-E SAE 10W-30	WSS M2C171-F1 SAE 10W-30		3,000 - 10,000**	


Modern engines are designed to operate on SAE 10W-30 oils


- OEM Fill since ~2010
- Based on OEM design, would not expect issues with:
 - Oil consumption should decrease with higher synthetic content
 - Low oil pressure
 - Sensor issues
- Wider vehicle operating range improved low temp performance, less wear on start-up

Synthetic Base Stocks Superior Low Volatility

Wear protection – no problem!

	Limit (ppm)	CITGARD 700 MFE ppm maximum	
Lead	10	0	
Aluminum	50	28	
	Î.		
CITGARD 700 MFE metal wear levels at 80,000 oil miles			

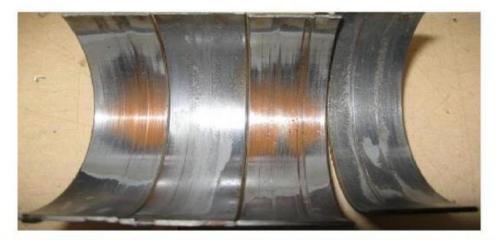
Concerns of Low Viscosity Engine Oils IWX Engine Tear Down at 850,000 Miles

CITGARD 700 MFE SB 10W-30 FA-4

REAR

Worn Liner for comparison

Worn Liner - mirror polishing


IWX Engine Tear Down at 850,000 Miles

CITGARD 700 MFE SB 10W-30 FA-4

Worn bearings for comparison

IWX bearings

Worn bearings

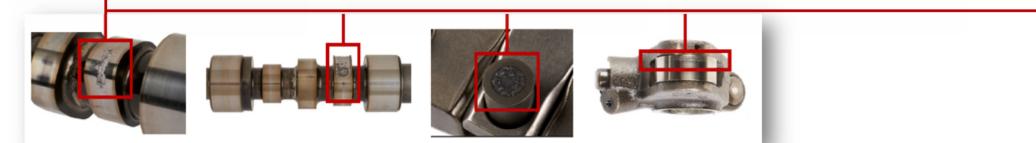
CITGARD 1000 Full Synthetic

- Blended as 5W-16
 - No Hardware Damage
 - 2017 Cummins ISX

Teardown at 500,000 miles

Four Competitors

- @ Normal CK-4 Viscosity
 - Significant Engine Damage
- 2017 Cummins ISX


Competitor A & D:

- Abrasive Wear
 - Cam Lobes
 - Rocker Arms

Competitor B: • Crosshead Pitting **Competitor C:**

Cam Lobe and Rocker Damage

© 2021 Infineum International Limited. Performance you can rely on. All rights reserved

CITGARD 700 Synthetic Blend SAE 10W-30

- API CK-4, CJ-4, CI-4 Plus, CI-4, CH-4
- Approved for major Diesel OEM's
- Balanced Detergent package
- Shear stable viscosity modifier

CITGARD 700 MFE Synthetic Blend SAE 10W-30

- API FA-4
- Cummins CES 20087
- Detroit Diesel 93K223
- Additional fuel savings vs CK-4 10W-30

CITGARD 800 Synthetic Blend SAE 10W-30

- Formerly CITGARD CNG/LNG Synthetic blend SAE 10W-30
- Multi-fuel capability: CNG/LNG, Diesel, Gasoline
- API CK-4/SN
- Cummins CES 20092 (CNG/LNG) and CES 20086 (Diesel) approval
- Major Diesel OEM Approvals

CITGARD 1000 Full Synthetic SAE 5W-30

- Formerly CITGARD SynDurance Plus Synthetic SAE 5W-30
- Extreme cold temperature performance
- API CK-4
- Major Diesel OEM Approvals
- Only 5W-30 approved for Ford WSS-M2C171-F1

спбо.	CITGARD® 800 SYNTHETIC BLEND HEAVY DUTY ENGINE OIL SAE 10W-30	
Homer cost 837019001001 HT W. W.		
VECAL 708.21. Microsom 01512	No ann an Anna an Anna an Anna Anna Anna	
No. WA		
NW	Note that the end of the end	
\diamond		an jalan A mar b Martin
Transition of the second secon		

Brand Name	Viscosity	Supplier
0W-40		
Mobil Delvac 1 ESP 0W-40	0W-40	ExxonMobil
5W-30		
CITGARD® SYNDURANCE® Plus Synthetic Heavy Duty Engine Oil	5W-30	CITGO Petroleum Corporation
5W-40		
Advantage HD DEO Full Synthetic	5W-40	Country Mark
Advantage Ultra Premium Plus	5W-40	Advanced Lubrication Specialt
Allied	5W-40	Allied Oil And Tire Company
AMALIE XLO Ultimate Full Synthetic Molybdenum Fortified	5W-40	AMALIE OIL Company
Archer Gold	5W-40	GROWMARK Inc
Bel-Ray® Hyperion Elite Synthetic	5W-40	Calumet Branded Products, LLC
Blue Mountain	5W-40	Old World Industries, LLC
CARQUEST	5W-40	Warren Oil Company, LLC
CITGARD® SYNDURANCE® Plus Synthetic Heavy Duty Engine Oil	5W-40	CITGO Petroleum Corporation
D-MO 5W-40 SYNTHETIC	5W-40	Federated Co-operatives Limited
Drydene DieselALL Syn™ 5W40 CK-4	5W-40	Drydene Performance Products
Duragard	5W-40	Advantage Dist. and Lubricants, LLC
Duron UHP 5W-40	5W-40	Petro-Canada Lubricants Inc.
ENHANCE Super Synthetic	5W-40	Enhance Lubricants, LLC
Fleet Pro Elite Full Synthetic	5W-40	Pinnacle Oil
International Full Synthetic	5W-40	Navistar, Inc.
KLONDIKE	5W-40	KLONDIKE Lubricants Corp.
Lubriguard Full Synthetic	5W-40	Warren Oil Company, LLC
Mag 1	5W-40	Warren Distribution
Mahindra	5W-40	Mahindra USA, Inc.
Marathon Multipower-3 Elite	5W-40	Marathon Petroleum Co LP
Maxtron Enviro Edge	5W-40	CHS Inc.
MFA OIL	5W-40	MFA OIL Company
Monolec Ultra [®] Syn Heavy Duty Engine Oil	5W-40	Lubrication Engineers, Inc.
Motorcraft Full Synthetic Diesel Motor Oil	5W-40	Ford Motor Company
Mystik® JT-8® Synthetic Engine Oil	5W-40	CITGO Petroleum Corporation

DIESEL MOTOR OILS MEETING FORD WSS-M2C171-F1

OEM Approved Fluids

Gear Oils

SYNDURANCE Synthetic Gear Lubricants

Transmission Fluids

- SYNDURANCE Synthetic MTF
- SYNDURANCE 668 ATF
- Emgard MTF 7011

Available Viscosity

• 75W-90, 80W-140

Primary Specification

- Eaton PS-386
- Allison TES 668
- Daimler DT-12

Suitable For Use Fluids

- CITGEAR Synthetic HD Gear
- CITGEAR Synthetic HD Gear
- DriveShift Synthetic AMT Transmission Fluid
- Quatrasyn Synthetic Transmission Fluid

Primary Suitable For Use Application

- SAE 50 Eaton PS 164 Rev 7
- 75W-90, 75W-140, 80W-140
- Mack M-Drive/Volvo I-Shift, Detroit DT12
- Allison TES 295

• Any Questions?

#CITGO #Lubricants #CITGARD Brundage-Bone Decreases Fuel Costs by Switching to CITGARD Low Viscosity HDEO | CITGO Lubricants

• Lubes Answer Line

800-248-4684

```
8:00 AM - 12:00 PM, 1:00 PM – 5:00 PM CT
Monday through Thursday
```

8:00 AM - 12:00 PM, 1:00 PM – 4:30 PM CT Friday

lubeshelp@citgo.com

Future Webinars

June 24, 2022 Water, Water, Everywhere - David Turner

July 8, 2022 LubeAlert Oil Monitoring – Erica McDonald

July 22, 2022 Lubricant Storage and Handling – David Turner