

ISO Cleanliness Requirements

David Turner, CLS, OMA-I, CLGS

©2019 CITGO Petroleum Corporation

David Turner, CLS, OMA-I, CLGS

- CITGO Sr. Technical Services Representative
- BS, Chemical Engineering
- 40 Years Experience in Lubricants
- STLE Certified
 - Certified Lubrication Specialist
 - Oil Monitoring Analyst I
- NLGI Certified
 - Certified Lubricating Grease Specialist
- Active in STLE, NLGI, and ASTM

Agenda

- Contamination Control
- Contamination Prevention
- Contamination Measurement
- Particle Counting
- NAS 1638 and ISO 4406
- Equipment Life Extension
- Filtration Basics
- Cleanliness Requirements for Various Applications

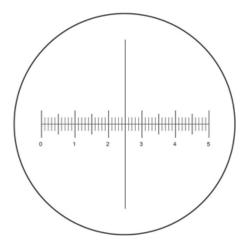
Contamination Control

- **Contamination Control** had different meanings to different people.
- In terms of lubricants, contamination means anything that is in the lubricant that is foreign to the finished lubricant formulation.
- Examples of contaminants include water, dirt, air, undissolved additives, plastic particles, metal shavings, fibers, and carbon particles.
- The term **control** means either excluding or removing anything that may get in or already be in the lubricant that is foreign to the formulation.

Contamination Prevention

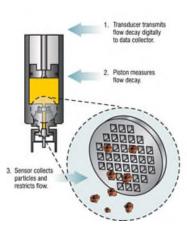
- The simplest approach to contamination control is prevention of the ingress of contaminants into the lubricant. Contamination prevention may consist of any of the following:
- Cleanliness standards for raw materials
- Good lubricant storage and handling practices
- Good maintenance practices to prevent contaminant ingress
- Product packaging cleanliness, both new containers and during filling
- Prevent contaminant ingress during packaging
- Ensure cleanliness of bulk transport trailers and totes
- Proper storage of filler containers

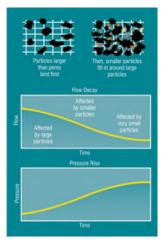
Contamination Measurement


- Sampling technique is critical to obtaining a representative sample for particle count testing.
- The sample container must be clean (special clean containers are available).
- The sample point should be dedicated for the purpose and capped or plugged when not in use.
- The sample point should be cleaned before each sample is obtained. Environmental contaminants must be excluded.
- The sample must be tightly closed to prevent ingress of atmospheric particles.

Contamination Measurement

- Once in the laboratory, the sample should be shaken or sonicated to evenly distribute particles throughout the sample.
- Testing should proceed immediately in order for the results to best represent the true number of particles in the sample.
- The use of a bottle sampler that deaerates the sample prior to testing is preferred, to remove air bubbles that can be counted as particles.
- Consistent sampling and testing techniques are necessary to produce results that are suitable for trending.


Particle Counting


- There are several methods for counting particles in lubricants:
- On optical microscopy, the sample is placed on a microscope slide and examined under a microscope with an eyepiece fitted with a reticle. Particles are manually counted. It is labor intensive and tedious. ASTM D2390 and SAE ARP-598.
- Patch testing (ASTM D2276) coupled with optical microscopy has been used for particle counting. Labor intensive and subject to operator technique.

Particle Counting

- Automatic particle counters automate the testing process and remove operator technique as a testing variable.
- Flow decay or mesh blockage particle counters work on the principle that the change in the differential pressure across a fine filter element is mathematically related to the size of particles captured on the mesh. They are not affected by air bubbles, water, or other liquid contaminants. The filter element eventually becomes blocked, affecting accuracy, and must be cleaned.

Particle Counting

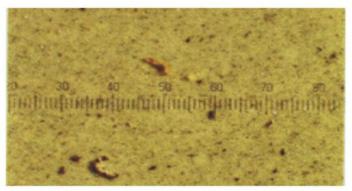
• Light extinction particle counters come in several models, with flow-through cells for on-line operation or use with a bottle sampler. Models based on white light bulbs and lasers have been developed. Both count particles by measuring the intensity of light reaching a sensor from the source. Accuracy can be affected by the opacity of the fluid, the color of the sample, the refractive index of the fluid and particles, the particle loading of the sample, and the particle size distribution.

National Aerospace Standard (NAS) 1638

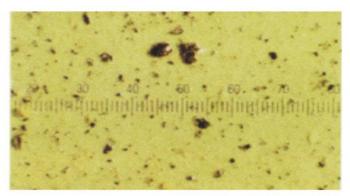
 NAS 1638 (2001) has been effectively replaced by SAE AS4059E (2005). However, NAS 1638 is still cited in many specifications. Cleanliness is classified by the number of particles per 100 mL in various size classes.

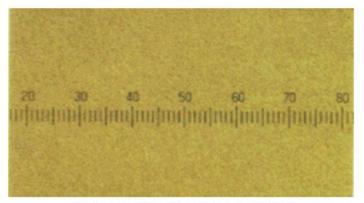
National Aerospace Standard 1638														
NAS CODE (Originally written in 1964revised in1992)														
			С	leanliness	Requirer	ments of F	Parts Used	d in Hydra	aulic Syste	ems				
				(ava	ailable fror	n Global I	Engineeri	ng Docun	nents)					
Particle				MAXIMU	M NUMBI	ER OF PA	RTICLES	6 PER 10	0 MILLILI	TRES (C	OUNTS/1	00 ML)		
Size														
Range	00	0	1	2	3	4	5	6	7	8	9	10	11	12
(microns)														
5 to 15	125	250	500	1,000	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000	512,000	1,024,000
15 to 25	22	44	89	178	356	712	1,425	2,850	5,700	11,400	22,800	45,600	91,200	182,400
25 to 50	4	8	16	32	63	126	253	506	1,012	2,025	4,050	8,100	16,200	32,400
50 to 100	1	2	3	6	11	22	45	90	180	360	720	1,440	2,880	5,760
>100	0	0	1	1	2	4	8	16	32	64	128	256	512	1,024

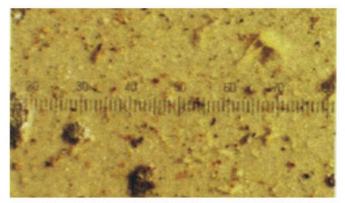
ISO 4406


- ISO 4406 (1999) assigns a cleanliness code in the format X/Y/Z, where:
- X represents the number of particles per mL >4µ
- Y represents the number of particles per mL >6µ
- Z represents the number of particles per mL >14µ
- The X, Y, and Z values correspond to a range of the number of particles per mL of fluid.

ISO 4406: Hydra Solid Contaminat	aulic Fluid Power tion Code (1999)	ISO Code
Greater Than	Including	
1,300,000	2,500,000	28
640,000	1,300,000	27
320,000	640,000	26
160,000	320,000	25
80,000	160,000	24
40,000	80,000	23
20,000	40,000	22
10,000	20,000	21
5,000	10,000	20
2,500	5,000	19
1,300	2,500	18
640	1,300	17
320	640	16
160	320	15
80	160	14
40	80	13
20	40	12
10	20	11
5	10	10
2.5	5	9
1.3	2.5	8
0.64	1.3	7
0.32	0.64	6
0.16	0.32	5
0.08	0.16	4
0.04	0.08	3
0.02	0.04	2
0.01	0.02	1
0	0.01	0






System with Typical Hydraulic Filtration 20/18/16

New Oil from Barrel 22/20/18

System with β 3 >200 Filtration 14/13/11

New System with Built-in Contaminants 23/22/20 Courtesy: Noria

Equipment Life Extension

- Noria produced a chart of expected life extension for various types of equipment based on reduction in particle count.
- Eaton, Vickers, John Deere, and others have produced charts for their equipment.

EATON								
Table I: Hydraulic Systems: Required New Machine Cleanliness								
Current Machine Cleanliness (ISO)	Target	Target	Target	Target				
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17				
27/25/22	25/23/19	23/21/18	22/20/17	21/19/156				
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15				
25/23/20	22/20/17	21/19/ 16	20/18/15	19/17/14				
25/22/19	21/19/16	20/18 /15	19/17/14	18/16/13				
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12				
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11				
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10				
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9				
19/17/14	16/14/11	15/13/10	14/12/9	14/12/8				
18/16/13	15/13/10	14/12/9	13/11/8	N/A				
17/15/12	14/12/9	13/11/8	N/A	N/A				
16/14/11	13/11/8	N/A	N/A	N/A				
15/13/10	13/11/8	N/A	N/A	N/A				
14/12/9	13/11/8	N/A	N/A	N/A				
Life Extension Factor	2X	3X	4X	5X				

Equipment Life Extension

							E	sti	mated L	ife E	xter	nsion	Tal	ole							
			Targeted Cleanliness Level (ISO Code)																		
		20/17	19	/16	18/1	15	17/14		16/13	15/1	2	14/1	1	13/10)	12/	/9	11	/8	10)/7
	26/23	5	3 7	3.5	9	4	>10	5 >	>10 6	>10	7.5	>10	9	>10	>10	>10	>10	>10	>10	>10	>10
	20/23	4 2.	5 4.5	3	6	3.5	6.5	4 7	7.5 5	8.5	6.5	10	7	>10	9	>10	10	>10	>10	>10	>10
	25/22	4 2.	5 5	3	7	3.5	9	4 >	>10 5	>10	6	>10	7	>10	9	>10	>10	>10	>10	>10	>10
	25/22	3	2 3.5	2.5	4.5	3	5 3	8.5 6	6.5 4	8	5	9	6	10	7.5	>10	9	>10	>10	>10	>10
	24/21	3	2 4	2.5	6	3	7	4 9	9 5	>10	6	>10	7	>10	8	>10	10	>10	>10	>10	>10
_	2-7/21	2.5 1.	53	2	4	2.5	5	36	6.5 4	7.5		8.5	6	9.5	7	>10	8	>10	10	>10	>10
Code)	23/20		5 3	2	4	2.5		37	7 3.5	9	4	>10	5	>10	6	>10	8	>10	9	>10	>10
Ö	20/20	1.7 1.3	3 2.3	1.5	3			2.5 5	5 3	6	3.5	7	4	8	5	10	6.5	>10	8.5	>10	10
õ	22/19	-	3 2	1.6	· /	/2	. 7	.5 5		7	3.5		4	>10	5	>10	6	>10	7	>10	>10
(ISO			1 1.8	1.3	2.3	1.7		23		4.5	3	5.5	3.5	7	4	8	5	10	5.5	>10	8.5
	21/18		2 1.5	1.5		1	· /	<i>p</i> 4	-	5		7	3.5	9		>10	5	>10		>10	10
Jes	,	1.2 1.	1 1.5	1.3	1.8	<i>.</i>		.6 3		3.5		4.5	3	5	3.5	7	4	9	5.5		8
lir	20/17		1.3	1.2	· /	1.5	/ /	.7 3		4	2.5	5	3	7	4	9	5	>10	7	>10	9
eai			1.2	1.05			1	.4 2				3.5	2.5			6		8	5.5		7
Existing Machine Cleanliness	19/16				1.3	1	/	.5 2				4	2.5		3			9		>10	8
ine		<u> </u>			1.2	/ 1.1		.3 1		2.2	1.7			3.5	2.5		3.5		4.5		6
chi	18/15	Hydra		Roll				.2 1			1.7	-		4	2.5	-	-	7		>10	6
Ма		and Di		Elem			1.7/ 1	.1 1		1.8		2.3	1.7			3.5		5.5	3.7		5
Ĝ	17/14	Engin	es	Beari	ngs		/		1	1.6	1.5		1.7			4	2.5		-	8	5
stir							/	1	1.2 1.1	1.5	1.3		1.5		1.7			4	2.5		3.5
Xis	16/13	Journ		Gear E						1.3	1.2		1.5		1.7	-		4	3.5		4
ш		Bearin	U	and C	Other	+		_		1.2	1.1		1.3		1.5			3.7		4.5	3.5
	15/12	and Tu				/						1.3	1.2		1.5		1.7	-		4	2.5
		Machir	hery			/		_			_	1.2	1.1		1.4			2.3	1.8		2.2
	14/11													1.3		1.6	1.6		1.8		2
			-		_			_			_			1.3	1.2	1.6		1.9		2.3	1.8
	13/10															1.4		1.8		2.5	1.8
																1.2	1.1	1.6	1.3	2	1.6

Courtesy: Noria

Filtration Basics

- Strainers are large-opening filters that are typically used to protect fluid handling equipment (pumps). Wire cloth of various mesh size and weave design is used to prevent the entry of large particles and debris that could damage the system circulation pump.
- Bag filters can remove large amounts relatively large particles. Often made of cellulose fiber.
- Cartridge filters can provide excellent cleanliness results.
- Filter performance is dependent on rated pore size, beta ratio, and dirt holding capacity.

Filtration Basics

- The filter pore size rating is the size at which the manufacturer determines the efficiency of the filter element. Most filters can be rated at multiple sizes with differing efficiencies. The rating depends on the type of media, depth of the media, size of the media fibers, and overall construction of the filter element.
- Beta (β) ratio is defined as the number of particles of a given size upstream of the filter divided by the number of particles of the same size downstream of the filter. For example, if there are 50,000 10µ particles upstream and 50 10µ particles downstream, the β ratio is 50,000/50 = 1000. The filter efficiency at 10µ is calculated as (1-(1/β))*100 = 99.9%

Beta Ratio	Efficiency
1.5	33.3
2	50
5	80
10	90
20	95
75	98.7
100	99
200	99.5
1000	99.9

Filtration Basics

• Dirt holding capacity is the amount of dirt a filter element can hold before it is blinded off or the pressure drop across it becomes excessively high. Dirt holding capacity is affected by the quantity, size, shape, and arrangement of the pores in the filter, and by the type and arrangement of the media or filter design. Larger diameter filters have greater dirt holding capacity. In general, when the diameter is doubled, the dirt holding capacity increases by a factor of 3.

Cleanliness Requirements for Various Applications

 Many lubricant applications have cleanliness requirements, from bearings to gears to hydraulic systems. Hydraulics have some of the most demanding requirements due to the tight clearances and high pressures involved. Some examples of the recommended cleanliness for hydraulic applications follow.

Hydraulic Fluids	12/9 Very clean	14/11 Clea	16/13 n	18/15	20/17 Dirty	22/19	24/21	26/23	Machine/element Roller bearing	ISO Target 16/14/12
Gear Oils		Ve	ry clean	Clean				Dirty	Journal bearing	17/15/12
Engine Lubes		Very clea	in	Clean		Dirty			Industrial gearbox	17/15/12
Turbine Oils	Ver	y clean	Clean	Dirty					Mobile gearbox	17/16/13
									Diesel engine	17/16/13
							Courte	sy: Noria	Steam turbine	18/15/12
									Paper machine	19/16/13

Courtesy: Lube-Tech

Cleanliness Requirements for Hydraulic Applications

	Low/Mediu Under 2 (moderate	000 psi	High P 2000 to (low/medium with		Very High Pressure 3000 psi and over (high pressure with severe conditions)			
	ISO Target Levels	Filtration Rating (B _{x(c)} ≥1000)	ISO Target Levels	Filtration Rating (B _{x(c)} ≥1000)	ISO Target Levels	Filtration Rating (B _{x(C)} ≥1000)		
Pumps								
Fixed Gear or Fixed Vane	20/18/15	22	19/17/14	10	18/16/13	7		
Fixed Piston	19/17/14	10	18/16/13	7	17/15/12	7		
Variable Vane	18/16/13	7	17/15/12	7	N/A	N/A		
Variable Piston	18/16/13	7	17/15/12	7	16/14/11	5		
Valves								
Check Valves	20/18/15	22	20/18/15	22	19/17/14	10		
Directional (solenoid)	20/18/15	22	19/17/14	10	18/16/13	7		
Standard Flow Control	20/18/15	22	19/17/14	10	18/16/13	7		
Cartridge Valve	19/17/14	10	18/16/13	7	17/15/12	7		
Proportional Valve	17/15/12	7	17/15/12	7	16/14/11	5		
Servo Valve	16/14/11	5	16/14/11	5	15/13/10	5		
Actuators								
Cylinders, Vane Motors, Gear Motors	20/18/15	22	19/17/14	10	18/16/13	7		
Piston Motors, Swash Plate Motors	19/17/14	10	18/16/13	7	17/15/12	7		
Hydrostatic Drives	16/15/12	5	16/14/11	5	15/13/10	5		
Test Stands	15/13/10	5	15/13/10	5	15/13/10	5		
Bearings								
Journal Bearings	17/15/12	7	N/A	N/A	N/A.	N/A		
Industrial Gearboxes	19/16/13	12	N/A	N/A	N/A	N/A		
Ball Bearings	15/13/10	5	N/A	N/A	N/A	N/A		
Roller Bearings	16/14/11	5	N/A	N/A	N/A	N/A		

Courtesy: Valin

Cleanliness Requirements – Hydraulic Pumps

	Pressure, PSI						
Pump Type	<2000	2000 - 3000	>3000				
Fixed gear	20/18/15	19/17/15	18/16/13				
Fixed vane	20/18/15	19/17/14	18/16/13				
Fixed piston	19/17/15	18/16/14	17/15/13				
Variable vane	18/16/14	17/15/13					
Variable piston	18/16/14	17/15/13	16/14/12				

Cleanliness Requirements – Hydraulic Valves

	Pressure	, PSI
Valve Type	2000	>3000
Directional (Solenoid)	20/18/15	19/17/14
Pressure control (modulating)	19/17/14	18/16/13
Flow control (standard)	19/17/14	19/17/14
Check	20/18/15	20/18/15
Cartridge (screw-in)	18/16/13	17/15/12
Cartridge (slip-in)	20/18/15	19/17/14
Proportional directional (throttle)	18/16/13	17/15/12
Proportional pressure control	18/16/13	17/15/12
Proportional cartridge	18/16/13	17/15/12
Servo	16/14/11	15/13/10

Cleanliness Requirements – Hydraulic Actuators

	Pressure, PSI							
Actuator Type	1000	2000	>3000					
Cylinder	20/18/15	20/18/15	20/18/15					
Vane motor	20/18/15	19/17/14	18/16/13					
Axial piston motor	19/17/14	18/16/13	17/15/12					
Gear motor	21/19/17	20/18/15	19/17/14					
Radial piston motor	20/18/14	19/17/13	18/16/13					

Questions

• Please post your questions using the Q&A function.

How to Contact Us

- Lubes Answer Line
- 800-248-4684

- 8:00 AM - 12:00 PM, 1:00 PM - 5:00 PM CT
-Monday through Thursday
- 8:00 AM - 12:00 PM, 1:00 PM - 4:30 PM CT
-Friday

<u>lubeshelp@citgo.com</u>

– Available 24/7

December 17, 2021

Railroad Industry Products and Sales