Contaminants in Lubricants & Contamination Control

The webinar will begin in less than 10 minutes.

Contaminants in Lubricants & Contamination Control

The webinar will begin in less than 5 minutes.

Contaminants in Lubricants & Contamination Control

Frank Hayes - CLS, OMA-I, MLA-I, MLT-I, CLGS & CRC

- CITGO Product Specialist
- B.S. Mechanical Engineering
- 25+ Years Experience in Lubricants, including with
 - Petro-Canada Lubricants, Sr. Technical Services Advisor
 - Conoco, Lubrication Engineer

Seth Schroeder – MLT-I

CITGO Senior National Account Manager
B.S. Agribusiness
10 Years of Selling Experience in the Lubricants Industry

 Background in Lubrication-Enable Reliability

David Turner - CLS, OMA-I, CLGS

- CITGO Senior Technical Services Representative
- B.S. Chemical Engineering
- 40+ Years Experience in Lubricants
- Active in STLE, NLGI, and ASTM

Types of Contaminants Solids Liquids Gases Other

Solid Contaminants

METAL PARTICLES

SOFT INSOLUBLE

Dirt

Environmental

- Silicon
- Aluminum
- Calcium
- Sodium
- Potassium
- Magnesium
- Iron

2

Industrial

- Concrete dust
- Clinker
- Coal or coke fines
- Cellulose fiber

Metal Particles

Typically produced in wear processes

Wear modes include:

- Adhesive (rubbing/sliding)
- Abrasive (cutting)
- Fatigue
- Erosive
- Corrosive
- Cavitation
- Polishing
- Fretting
- Electrical Discharge

Each produces a characteristic particle shape.

Soft Insoluble Primarily produced by oxidation processes.

Varnish

Sludge

Lacquer

Soot Typically formed during the combustion process in diesel engines.

- Particle size: very small, averaging 0.078 microns
- When they agglomerate in the oil, the size becomes large enough to cause problems.
- Texture: very hard
- Agglomerations of soot can cause severe wear in an engine.

Sources of Contamination

New Oil

Unsealed Tanks or Drums

Oil Transfer Containers

Funnels

Ventilation and Breathers

Seals

Wear

Service and Manufacturing Debris

Solid Contamination Control

DIRT & METALS

- 3-micron filtered desiccant breathers
- 10-micron to 3-micron staged filter skid
- 10-micron to 3-micron in-line staged filtration
- Magnetic plates

Liquid Contamination

Water

Found almost everywhere

Even in new lubricants

Pervasive

Can have multiple negative effects on the performance of a lubricant. Water in in-service Iubricants can range in concentration from Iow ppms in wellmaintained oil (e.g., transformer oil) to 30% or more in a grossly contaminated system.

How Much Water is Typically in Oil?

- Most new lubricating oils contain trace amounts of dissolved water
 - Typically, less than 100 ppm (0.01 %)
- Transformer oils and high dielectric strength hydraulic oils are specially treated to reduce water concentration (<30 ppm, 0.003 %)

New oil should **never** contain emulsified or free water!

Where Does the Water Come From?

- The atmosphere (humidity, precipitation)
- Improper or ineffective vent or breather
- Improper lubricant storage
- Cooling system leaks
- Condensation
- Equipment wash-down

A small amount of water dissolves in oil, causing no change in appearance, and no decrease in performance.

The lubricant typically begins to become hazy at the following water concentrations:

Turbine oils, bearing and circulating oils	~100 to 150 ppm
Hydraulic oils	~150 to 200 ppm
Industrial gear oils	~200 ppm
Engine oils	~400 ppm
Synthetic fluids	
PAO	~300 ppm
Diester	~2000 ppm
PAG	~3000 ppm

Other Forms of Water

Emulsified Water

As the oil is churned in service, the water forms a stable emulsion.

Free Water

Water droplets in the oil merge to form a layer of free water.

Effects of Water on Lubricant Performance

- Loss of hydrodynamic film in journal bearings
- Flash vaporization leading to erosive wear in rolling element bearings

Viscosity Increase

- Potential reduction of oil flow or increasing the pressure required to pump the oil
- Viscosity increase due to water can mask other issues, such as fuel dilution

Oxidation

- The oil oxidation rate is increased in the presence of water
- The presence of catalytic metals (copper, tin, lead) also contributes to an increase in oxidation rate

Effects of Water on Lubricant Performance

Hydrolysis

- Esters (diesters, phosphate esters) can react with water, breaking down into organic acids and alcohols
- Hydrolytic degradation destroys the base fluid in the lubricant, and the formation of organic acids can cause corrosion on metal surfaces

Additive Degradation

- Certain anti wear, extreme pressure and oxidation inhibitor additives can also undergo hydrolysis
- Additive effect can be diminished or removed completely from the lubricant, and acidic by-products to be formed

Additive Loss

- Detergents, dispersants, rust inhibitors and demulsifiers can be dissolved in the water phase
- Effectively removing them from the lubricant, along with their positive effects on lubricant performance

Effects of Water on Lubricant Performance

Hydrogen Embrittlement

- Water can be decomposed into hydrogen and oxygen ions
- Hydrogen ions then cause metallurgical changes in bearing surfaces, leading to subsurface cracking and eventually pitting and spalling

Filter Performance

- Water can quickly degrade filter performance
- Paper (cellulose) filters that perform very well with dry oil can disintegrate when exposed to water and release fibrous material into the oil

Water: Sources of Contamination

Environmental

- Headspace condensation
- Rain and snow
- Hygroscopic tendency

Hose Sprays

- High-pressure wash
- Fire suppression

Steam System

Process Water

Heat Exchangers

Combustion Condensate

Fuel Fuel dilution is a serious issue for many vehicle fleets. Fuel dilution can reach greater than 20% in vehicles with high idle times.

Reduced Oil Viscosity – Fuel dilution causes the viscosity of engine oil to decrease sharply.

In one study, the effect of fuel dilution on oil viscosity was determined: 5% fuel dilution viscosity reduced 20% 10% fuel dilution viscosity reduced 35% viscosity reduced 48% 15% fuel dilution The dilution effect is greater with higher-viscosity oils.

Fuel Dilution

Additive Dilution Effects

- Reduced detergency
- Reduced wear protection
- Reduced oxidation inhibition
- Reduced resistance to acid formation corrosion

LOW OIL PRESSURE & LOWER OIL FLOW RATE

OIL

VOLUME

INCREASE

OIL COATING WASH OFF

OIL VOLATILITY

INCREASE

Causes of Fuel Dilution

Stop-and-go Driving

Incomplete fuel combustion

Cold Weather Start-up

 Lower than optimum combustion temperature

Fuel Injector Issues

Fuel not atomized adequately

Poor Combustion

Fuel not burned completely

Other Lubricants

Cross-contamination with a different lubricant can be the cause of some unique problems. Contamination of thousands of gallons of turbine oil by as little as one quart of engine oil can ruin the air release, foam resistance and water separation properties of the turbine oil. To a less dramatic extent, the addition of a different viscosity grade of hydraulic oil into a hydraulic system can cause degradation of the system performance.

Mixing of competitive products in an industrial system can have serious effects. Additive packages, and even base oils, can be incompatible.

Effects of Coolant (Glycol) Contamination

Oil Thickening

Emergence of Organic Acids

Additive Degradation Oil Filter Plugging and Eventual By-Pass

Formation of Abrasive Oil Balls Elemental Evidence of Coolant Contamination

Wash-down Chemicals

In the food and beverage industry, equipment and facilities are washed down on a regular schedule, often with aggressive wash-down chemicals. Those chemicals can degrade additives and wash grease out of equipment.

Frequent relubrication of food and beverage processing equipment may be necessary.

Liquid Contamination Control

Tightly closed tank and reservoir hatches help to keep water and wash-down chemicals out of lubricant systems

Gas Contamination

Air

Natural Gas

Refrigerant Gases

Air New oil typically contains up to 5% dissolved air

Air in Oil: 4 Phases

- Air in oil can result in an accelerated depletion of antioxidant additives and possible oil oxidation.
- Other effects include micro dieseling, viscosity increase, foaming, rust, corrosion, sludge and varnish formation and cavitation.

The lubricants used in natural gas compressors can absorb a significant portion of the gas.

Mineral oils can absorb more gas and suffer significant dilution. Higher molecular weight hydrocarbons have a greater dilution effect than methane.

Polyalkylene glycol (PAG) based fluids have greater resistance to gas dilution.

Natural Gas

Refrigerant Gases

The lubricants used in refrigeration compressors must be compatible and to a certain degree miscible with the refrigerant.

Gas Contamination Control

Other Contaminants

Heat: Oxidation

Heat is one of the worst enemies of lubricants. The higher the oil temperature, the higher the rate of oxidation.

For every 10°C (18°F) rise in oil temperature above 60°C (140°F), the rate of oxidation doubles, cutting the oxidation life of the product in half.

Heat: Viscosity

An increase in temperature causes the viscosity of oil to decrease. The proper viscosity for the lubrication of the application may not be maintained at too high a temperature.

Radiation

Only a consideration in nuclear power applications.

Lubricants used in nuclear power plants **must** have proven resistance in the case of radiation exposure.

Other Sources of Contamination

Controlling Contamination

Exclusion

Removal

- New oil
- Ventilation and breathers
- Seals
- Wear generation
- Service and manufacturing debris
- Filter dumping

The cost of keeping dirt out of oil is probably only about 10 percent of what it will cost to remove it from the oil.

- Proper filters for circulating systems
- Off-line filters for some splash/bath-lubricated machines
- Filter carts for other machines
- Proper sump and reservoir design and management
- Timely filter servicing

The cost of using high-performance filters over a machine's life will generally be much less expensive than using cheap, low-efficiency filters.

The Importance of Controlling Contamination

Filter	ISO Code	Dirt (lbs.)	50-lb. bags	Relative Pump
25-micron nominal	21/18	6,784	136	1
10-micron nominal	19/16	1,809	36	1.9
10-micron absolute	16/13	211	4.2	4.4
6-micron absolute	14/11	53	1	8.8
3-micron absolute	12/9	14	0.28	15

Images provided by Noria Corporation

The Importance of Controlling Contamination

Primary Wear Mechanisms

Running an Efficient Lube Room

LubeAssure. LUBRICATION MANAGEMENT PROGRAM

Welcome to the LubeAsssure Portal, your home for support, training and tools to help you better serve your Industria

We know a well-organized production line lubrication system can help reduce mistakes. The CITGO LubeAssure Lubrication Management Program offers this syst you can use to optimize your lubrication program and keep your entire maintenance team informed.

Access label wizard - interactive tool to create custom labels.

Access lube equipment catalog for Lis filter buggies, to desiccant filters, lube ca storage cabinets. Se

OilSafe

CATALOG

Which oil is right for the are looking for? The Cline Advisor will give you the corresponding CITGO br your specified vehicle.

1

The CH volume to the constraint of the constrain

Questions?

Please post your questions using the Q&A function.

Contact Us

Lubes Answer Line 800-248-4684

8:00 AM - 12:00 PM 1:00 PM - 5:00 PM CT Monday - Thursday

8:00 AM - 12:00 PM 1:00 PM - 4:30 PM CT Friday

lubeshelp@citgo.com

Future Webinars

June 30, 2023

LubeAlert[®] Oil Condition Monitoring

Thank You!

See you next time!

