

CITGO Compressor Lubricants

The webinar will begin in less than 10 minutes.

CITGO Compressor Lubricants

The webinar will begin in less than 5 minutes.

Webinar starting soon; until then...

TEST YOUR KNOWLEDGE

Compressors are used to move liquids.

True

False

Webinar starting soon; until then...

TEST YOUR KNOWLEDGE

A diester based compressor fluid leaves the most deposits in compressors.

True

False

Webinar starting soon; until then...

TEST YOUR KNOWLEDGE

How many Test Package Tiers are offered through the LubeAlert Fluid Condition Monitoring Service?

3

4

5

6

CITGO Compressor Lubricants

Amber Fessler - NLGI CLGS; STLE CLS & OMA-I

- CITGO Senior Sector Manager
- Materials Engineer
- 14 Years of Experience in Lubricants
- STLE Certified
 - Certified Lubrication Specialist
 - Oil Monitoring Analyst I
- NLGI Certified
 - Certified Lubricating Grease Specialist

Want Resources?

2026
Programs
Guide

Support
Literature

Social
Media
Toolkit

Webinars

The screenshot shows the CITGO MarketNet homepage for the 'Lubes' category. The top navigation bar includes the CITGO logo, 'MarketNet', and a dropdown menu. The main content area features a 'Welcome' message and a grid of resource cards. The cards include: SHOP PRINT STORE, GO FOR THE GREEN, 2026 PROGRAMS GUIDE, MARKETER COUNCIL INFORMATION, AUTOMOTIVE LUBRICANTS PROGRAM, Webinars (CLICK TO REGISTER), Lubes Advisor, Learn About LubeAlert, LubeAssure, PRODUCT CROSS REFERENCE, CLARION SWIFTSHIP PROGRAM, GREASE TOOLKIT, JUST TRY IT, PC-12 TRUCK STOP, VEKTOR PARTNER, SOCIAL MEDIA TOOLKIT, and MARKETNET 2.0 ORDERING PORTAL. Below the grid, a large red arrow points upwards towards a callout box. The callout box contains the text 'Now Available: 2026 Lubricants Programs Guide' and 'View the [2026 Lubricants Programs Guide](#) to kick-start the new year right!'. A small image of the 2026 Lubricants Programs Guide is also shown.

Future Webinars

February 23: Tech Talk:
Lubrication in the Construction
Industry

April 6: PC-12 Update: The Next
Generation of Heavy Duty Diesel
Engine Oils

April 20: Tech Talk: Grease

June Luke – Lean Six Sigma Black Belt

- CITGO Senior Product Specialist
- B.S. and Master of Chemical Engineering with Specialization in Polymer Science and Engineering
- 16+ yrs product/process development and scale-up experience in the chemical and energy industries
 - Lead Research Engineer, Project Lead, and Program Manager for leading lubricant additive and oil marketer companies for industrial and automotive lubricants

Frank Hayes - CLS, OMA, MLA-I, MLT-I, CLGS & CRC

- CITGO Senior Product Specialist
- B.S. Mechanical Engineering
- 28 Years Experience in Lubricants, including with
 - Petro-Canada Lubricants, Sr. Technical Services Advisor
 - Conoco, Lubrication Engineer

What is a Compressor?

Compressor Types

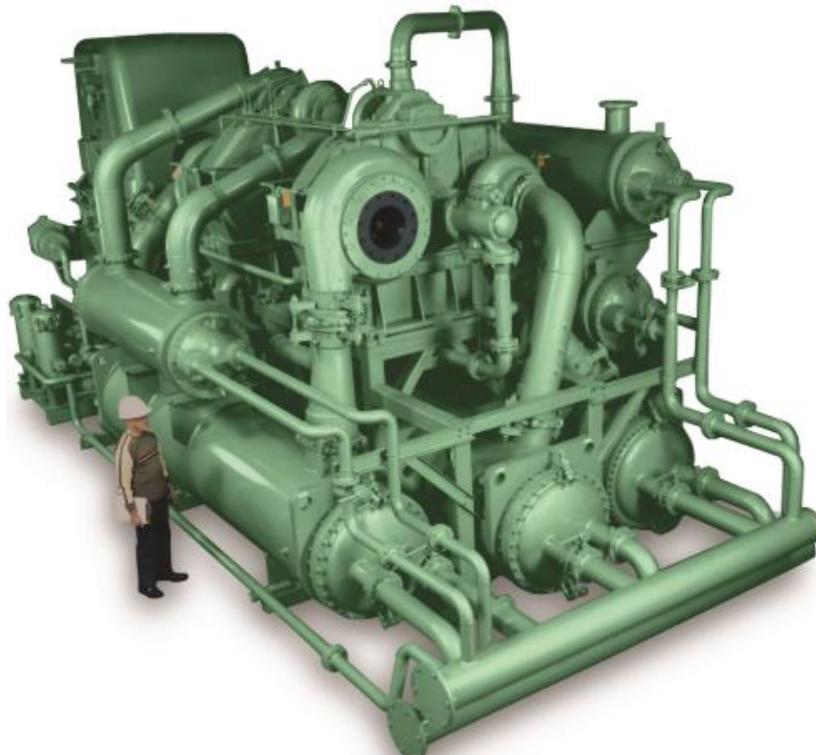
Key Functions of Compressor Lubricants

Application Types

CITGO & Clarion Compressor Lubricants

OEM Cross Reference Chart

Used Oil Analysis


Agenda

What is a **Compressor**

What is a Compressor?

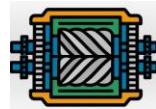
A compressor is a mechanical device that increases the pressure of a gas. In industry, they are commonly used to compress gases for the purpose of storage or transportation.

Compressor Types

Compressor Types

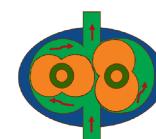
- The criteria for the ***selection of lubricant*** depends on the type of gas to be compressed and the design of the compressor which may have different operating conditions and lubrication needs
- Two major types of compressors include **positive displacement** and **dynamic**

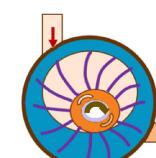
Compressor **Types**

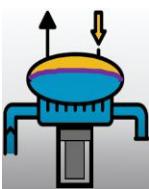

POSITIVE DISPLACEMENT

(↓Volume -> ↑Pressure)

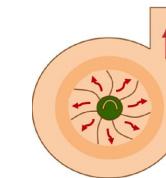
RECIPROCATING

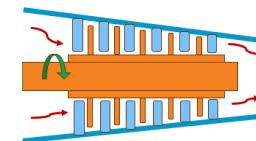

ROTARY SCREW


ROTARY SLIDING VANE


ROTARY LOBE

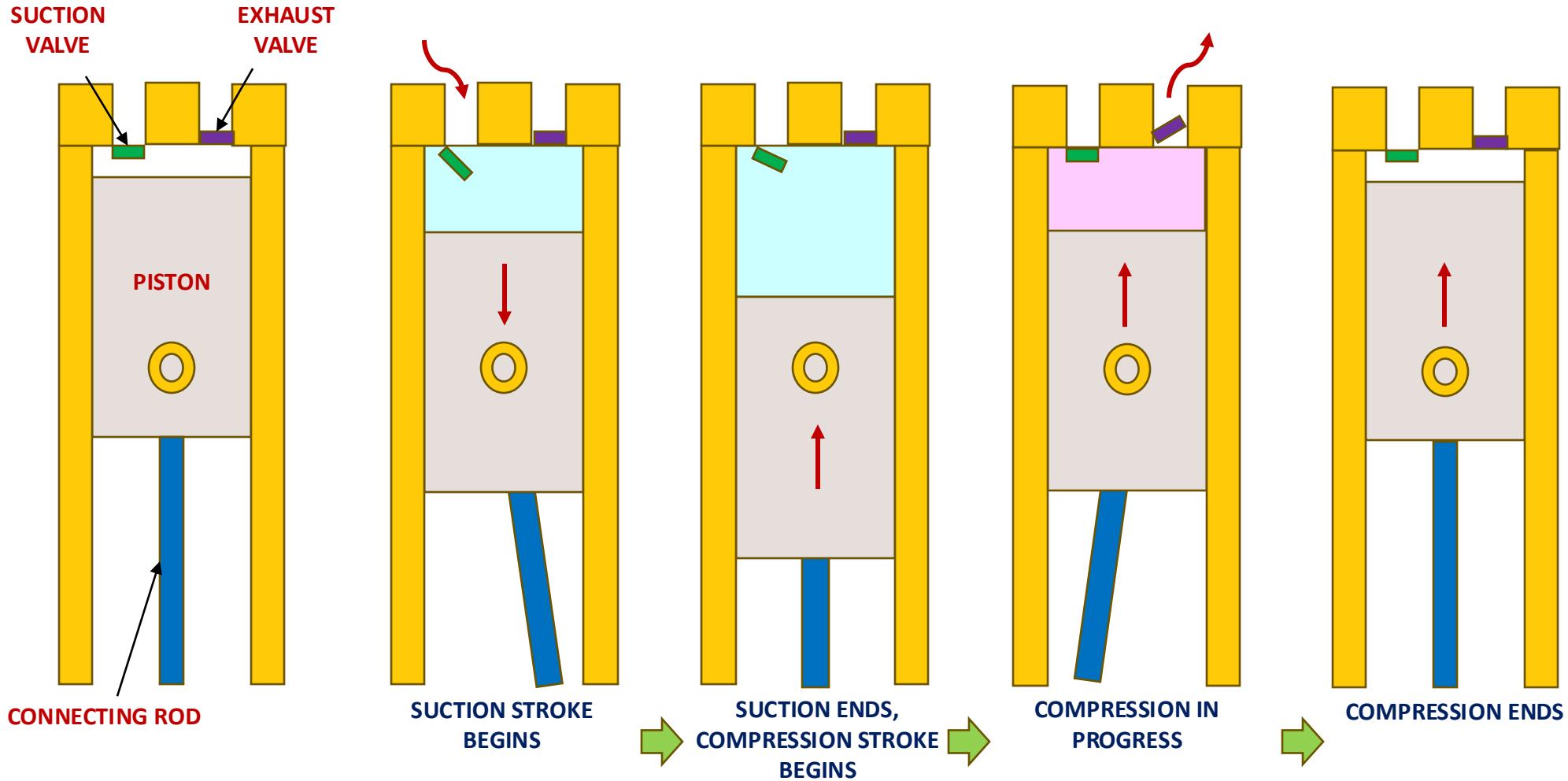
ROTARY LIQUID RING


DIAPHRAGM


DYNAMIC

(↑Velocity -> ↑Pressure)

CENTRIFUGAL FLOW

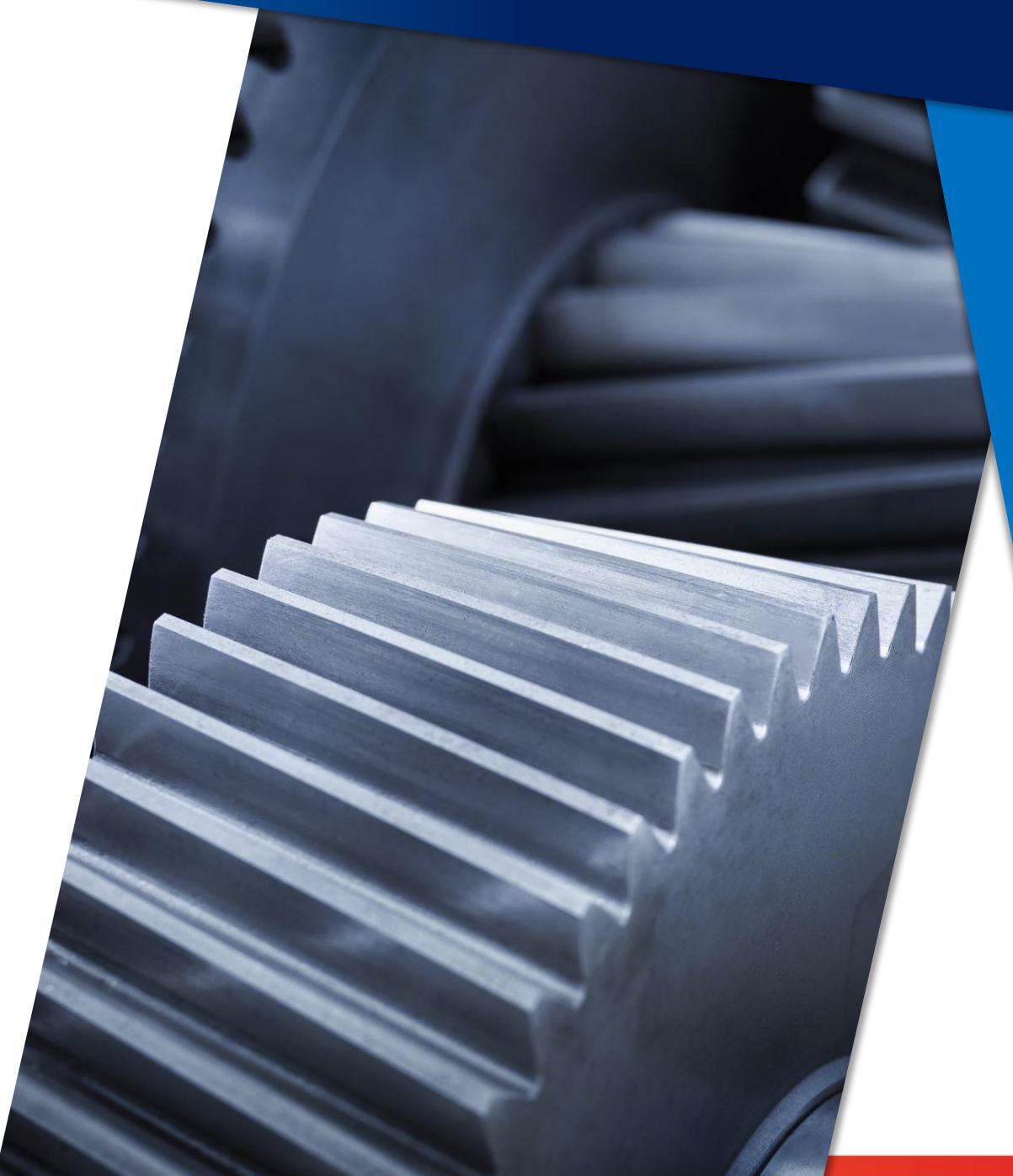

AXIAL FLOW

MIXED FLOW (AXIAL & CENTRIFUGAL COMBINED)

Positive Displacement

Reciprocating Compressor

LUBRICATION METHODS


Cylinder Parts

- Cylinders, rings, valves, rod packing in double acting
- Force feed or splash lubrication

Bearing or Running Gear Parts

- Pistons, main and connecting rods, crosshead pin, crankshaft, crosshead guides, bearings
- Splash, flood, or pressure circulation system lubrication

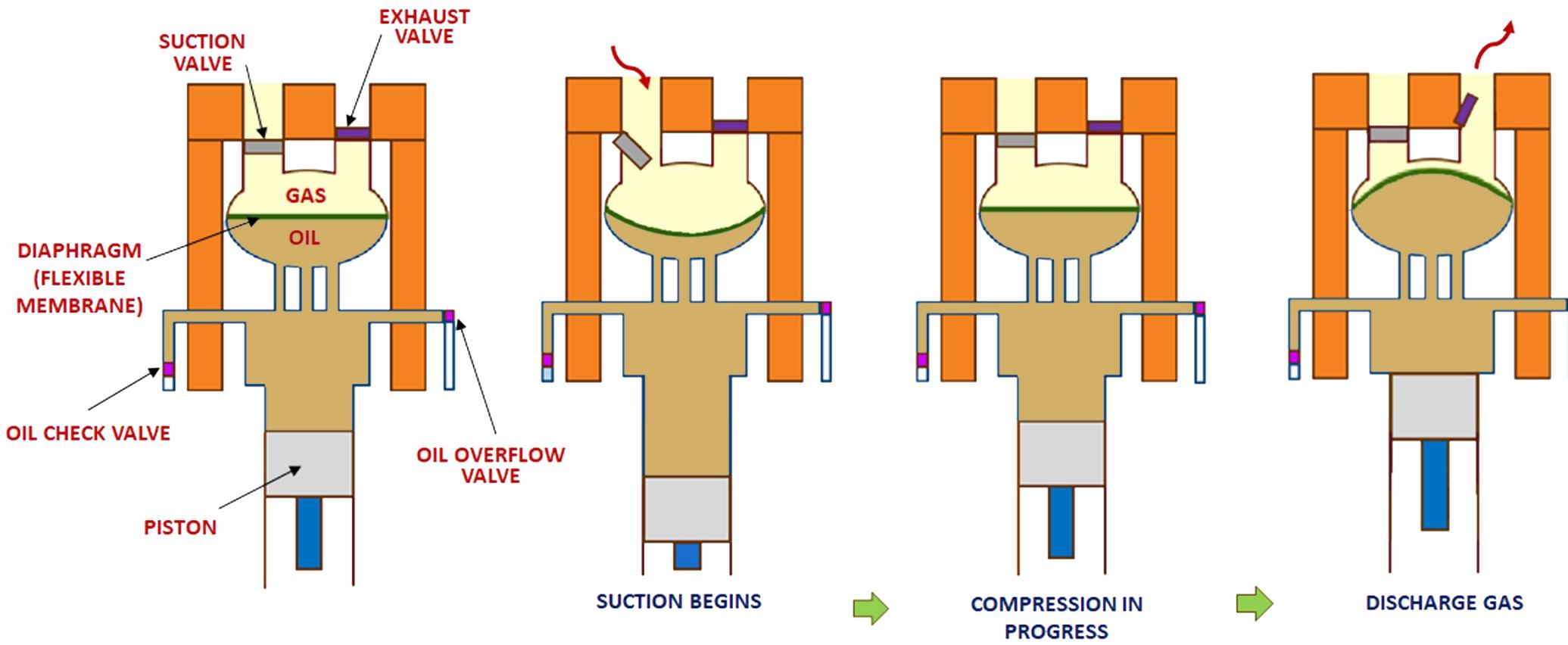
Cylinder and running gear parts may be lubricated from same or separate lube systems

Positive Displacement

Reciprocating Compressor

Cylinder Lubrication

- Oxidation → insolubles → deposits on discharge valves and piping → carbon deposits at high temperatures
- Deposit buildup → discharge valve seating misalignment → gas leak → **efficiency loss**
- Restricted discharge passages → higher discharge pressure and temperature → rapid oxidation and deposit buildup → carbonaceous deposits ignite at high temperatures -> **fires and explosions**
- Gas contaminants may be reactive and/or corrosive (e.g. H₂S, HCl, ammonia, oxygen, etc.)
- Metallic wear particles (e.g. iron, copper) may act as a catalyst and promote oil oxidation.
- Air moisture may condense during down time and lead to rust and wear on metal surfaces
- Lubricant helps to reduce friction, cool components, seal piston rings, and prevent wear


Bearing Lubrication

- Suitable viscosity grade at the operating temperature is most critical to ensure proper flow and lubrication

Common viscosity grades ISO VG 68-460

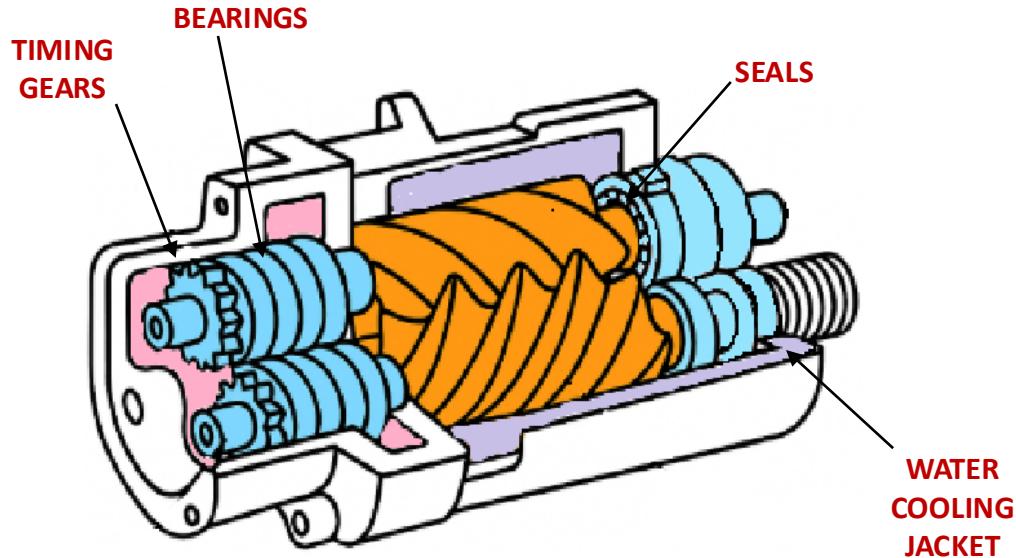
Positive Displacement

Diaphragm Compressor

Positive Displacement

Diaphragm Compressor

LUBRICATION METHODS


- Only compressor box and diaphragm make contacts with gas
- Hydraulic system lubrication

LUBRICATION

- Oil-free compression with easy maintenance
- Commonly use ISO VG 68 or 100 hydraulic oils with antiwear

Positive Displacement

Rotary Screw Compressor

- May be multistage with intercoolers to achieve higher discharge pressure while improving efficiency and reducing power consumption
- Less maintenance relative to reciprocating compressors due to fewer moving parts
- Compact, space efficient, quiet, continuous flow with minimal pressure variation
- Common in lower pressure applications

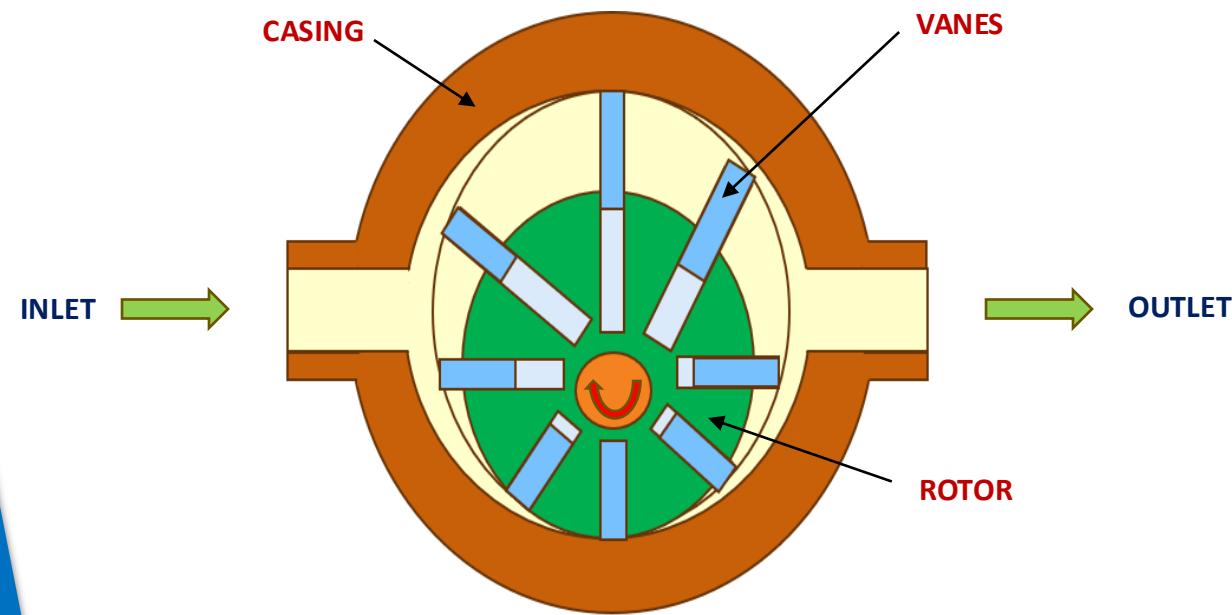
Positive Displacement

Rotary Screw Compressor

LUBRICATION METHODS

- Oil flooded lubrication
 - Oil is injected into the cylinder to cool the compressed gas to seal the rotor and to lubricate the moving parts
 - The male rotor drives faster than the female rotor due to fewer and larger lobes
 - External circulation system for oil temperature management and separation
- Oil free or dry screw lubrication
 - No oil is injected, and rotors are not lubricated
 - Delivers oil free gas
 - Timing gears synchronize the rotors and prevent contact
 - External cooling systems or jackets
 - Lubricant for lubricating gears and bearings only

LUBRICATION


- Oil flooded lubrication commonly use ISO VG 32 and 68 oils
- For dry screw lubrication, only gears and bearings require lubrication

Positive Displacement

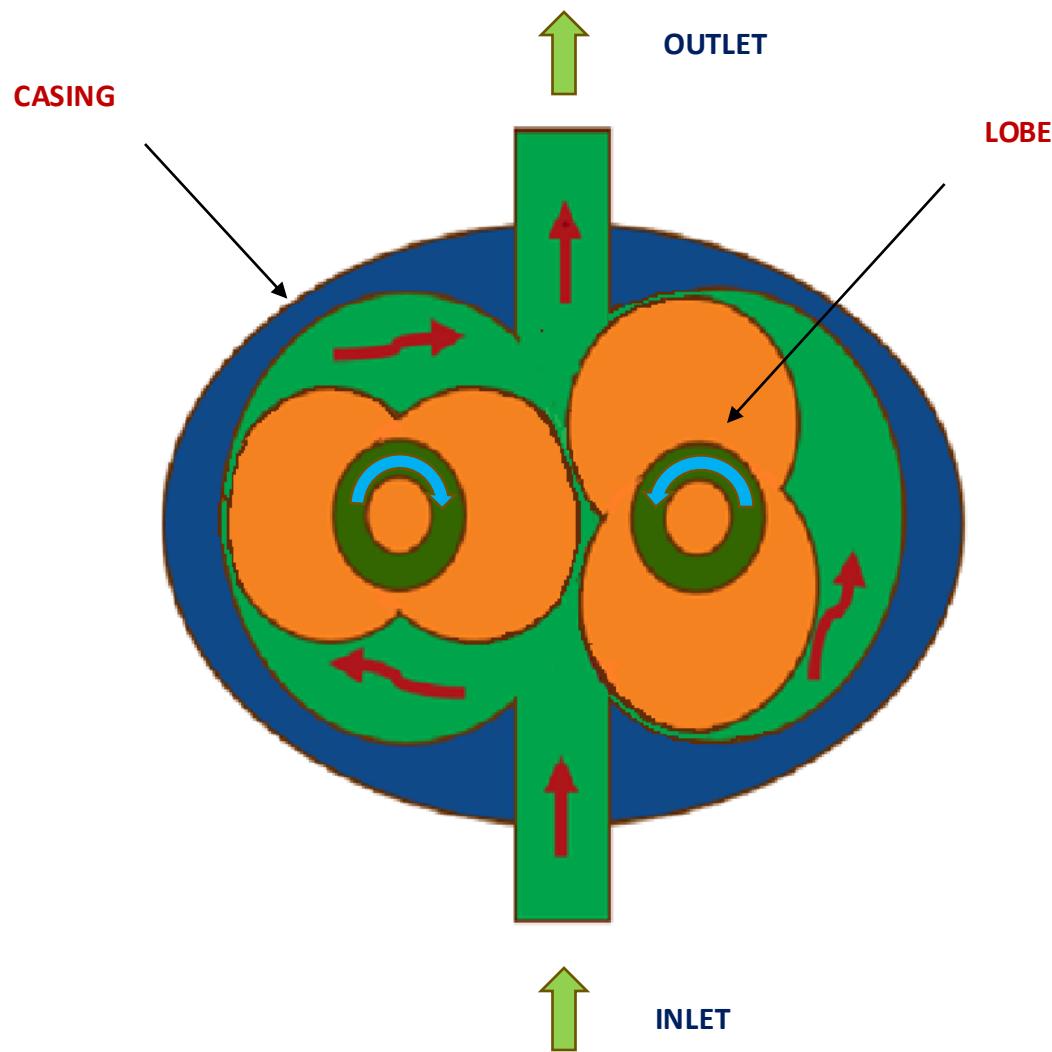
Rotary Sliding Vane Compressor

- Less moving parts and easier to maintain relative to screw compressors (no timing gears)
- Less expensive than screw compressors at similar capacity, and more compact and quiet
- Screw compressors may be preferred at higher flow rates and pressure applications

LUBRICATION METHODS

- Air cooled, water cooled, oil cooled or oil flooded, or a combination of <oil and air> or <oil and water> cooled
- The lubricant helps to extend compressor life by lubricating, cooling, sealing, and protecting parts

Positive Displacement


Rotary Sliding Vane Compressor

LUBRICATION

- Commonly use ISO VG 32 to 220 oils
- ISO VG 32 oils for light-duty applications
- ISO VG 100-220 oils for heavy-duty applications
- Synthetic lubricants are recommended for severe operating conditions and help to extend oil life
- ISO VG 68 oil is common

Positive Displacement

Rotary Lobe Compressor

- Compression occurs outside the chamber typically in the discharge piping as it exits the compressor when the downstream pressure is higher than the inlet
- Unlike other rotary compressors, there is no internal compression
- Common in low pressure applications such as vacuum systems, blowers, pneumatic conveyors

LUBRICATION METHODS

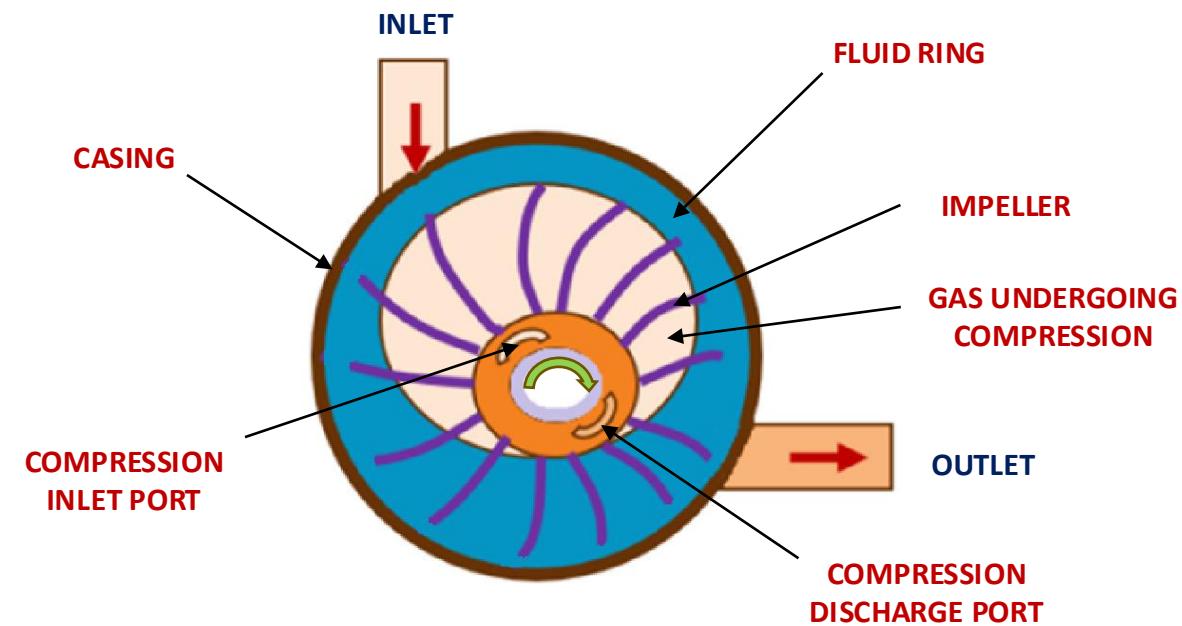
Oil Free Lubrication

- Lobes do not touch each other or the casing
- No internal lubrication is required
- Timing gears and shaft bearings require external lubrication

Oil Flooded Lubrication

- Lubricant helps to cool the compressor, protect the bearing and timing gears from wear and corrosion, and seal between the lobe rotors and casing to enable greater pressure capability
- Lubricant is separated from discharge gas and recycled for use

LUBRICATION


- Commonly use ISO VG 150 for normal operating conditions
- Higher temperatures applications may use ISO VG 220
- Heavy-duty applications may require antiwear protection for the gears
- Synthetic lubricants are recommended for severe operating conditions and help to extend oil life

Positive Displacement
Rotary Lobe Compressor

Positive Displacement

Rotary Liquid Ring Compressor

- Liquid ring seals between the rotor and casing, absorbs heat, and cools the compressor
- Liquid ring may absorb and flush contaminants, thus enabling wet and corrosive gas compression
- Less maintenance and wear with no metal-to-metal contact moving parts
- Common in vacuum systems, chemical processing, and food processing

Positive Displacement

Rotary Liquid Ring Compressor

LUBRICATION METHODS

Oil Free Lubrication

- The gas has no contact with the lubricating oil during compression (no internal lubrication)
- The bearings and mechanical seals are lubricated and isolated from the compression chambers

LUBRICATION

- Commonly use ISO VG 46 for normal operating conditions in industrial applications
- ISO VG 32 may be used in low temperature conditions, and ISO VG 100 may be used in high pressure and temperature conditions to provide better wear protection

Dynamic Centrifugal Flow Compressor

- Gas is drawn into the impeller eye, accelerated by the impeller blades, and pushed outwards by centrifugal forces. As the gas moves through a diffuser, the gas velocity decreases and pressure increases
- Single or multistage with intercoolers
- High flow rates, low vibrations, reliable, and continuous operation
- Low maintenance with less moving parts
- Common in refineries, chemical processing plants, and large-scale industrial applications

Dynamic

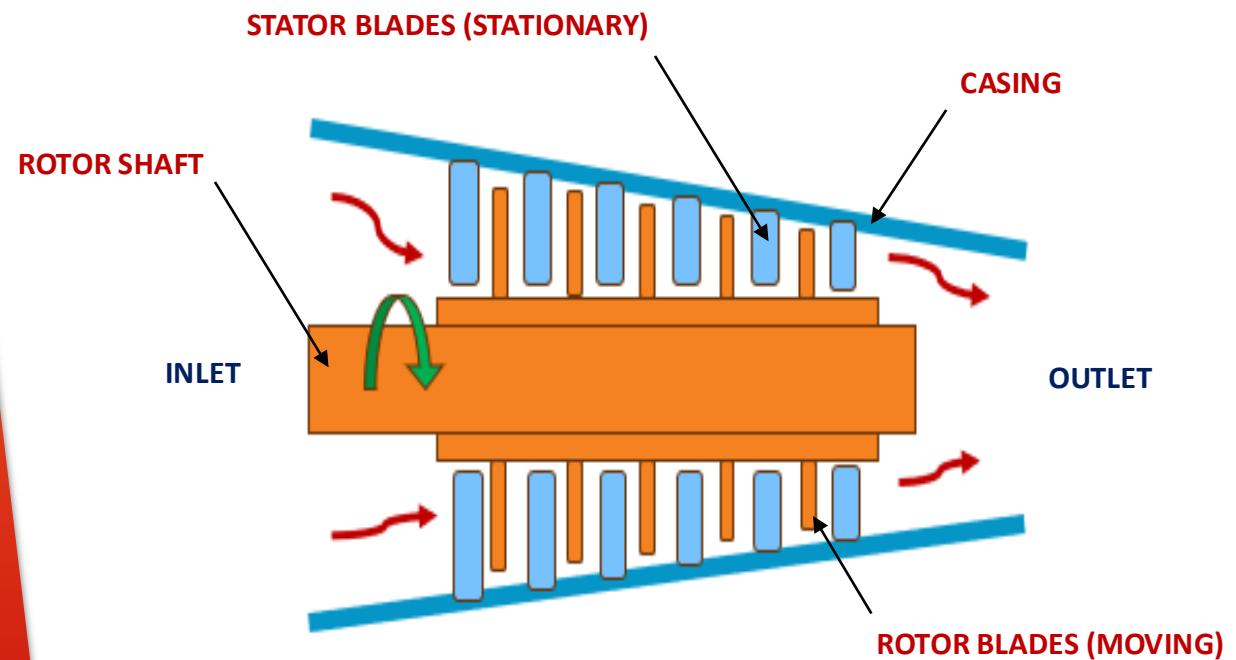
Centrifugal Flow Compressor

LUBRICATION METHODS

Oil Free Lubrication

The gas has no contact with the lubricating oil during compression (no internal lubrication)

The bearings and gears are lubricated using a pressurized oil circulation system and isolated from gas flow


The oil lubricates the bearings and gears by reducing friction and wear, dissipates heat, provides rust and corrosion protection, prevents varnish and sludge buildup, prevents leaks in mechanical seals, and resists oxidation and thermal breakdown.

- Commonly use ISO VG 32 or 68 oils
- ISO VG 32 may be used in low temperature conditions
- ISO VG 100 may be used for high pressure and temperature conditions

LUBRICATION

Dynamic Axial Flow Compressor

- Gas is compressed as it flows parallel to the axis of rotation through alternating rows of moving and stationary blades (low pressure rise per stage, multistage to achieve high pressure). Pressure is further increased as it leaves through a diffuser
- Smaller diameter (but longer) relative to centrifugal compressors
- High efficiency at large flow rates
- Common in moderate pressure and high flow applications such as jet engines and gas turbines

LUBRICATION METHODS

Oil Free Lubrication

LUBRICATION

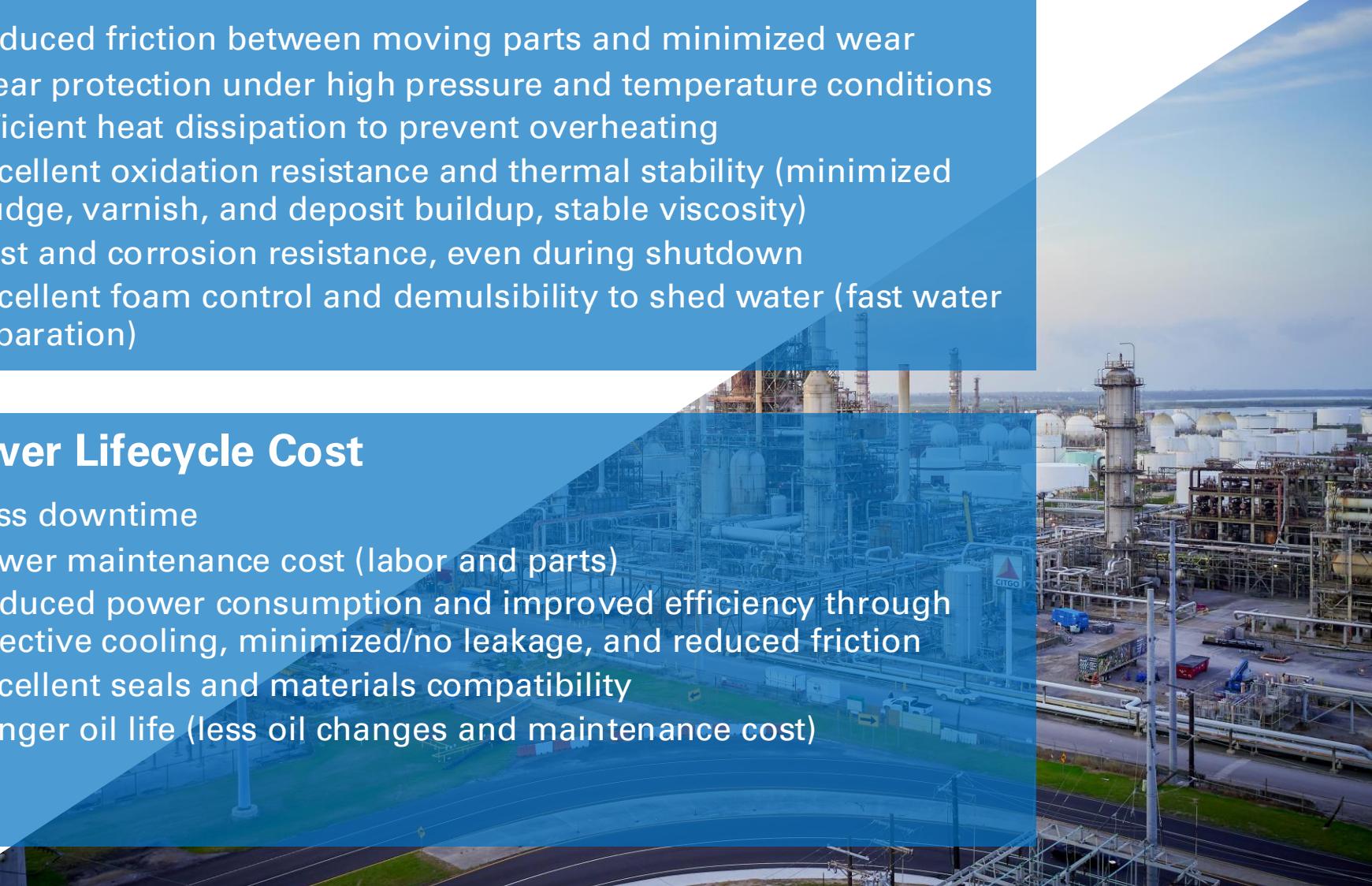
- Commonly use ISO VG 32 to 100 oils
- ISO VG 32 and 46 may be used for low temperature conditions, and ISO VG 68 and 100 may be used for high pressure and temperature conditions to provide better wear protection
- ISO VG 46 and 68 oils are common and offer balanced flow and protection

Dynamic
Axial Flow Compressor

- The gas has no contact with the lubricating oil during compression (no internal lubrication)
- Bearings are lubricated using a pressurized oil circulation system and isolated from gas flow
- The oil lubricates the bearings by reducing friction and wear, dissipates heat, provides rust and corrosion protection, prevents varnish and sludge buildup, prevents leaks in mechanical seals, and resists oxidation and thermal breakdown

Key Functions of **Compressor Lubricants**

Key Functions


Extend Equipment Life

- Reduced friction between moving parts and minimized wear
- Wear protection under high pressure and temperature conditions
- Efficient heat dissipation to prevent overheating
- Excellent oxidation resistance and thermal stability (minimized sludge, varnish, and deposit buildup, stable viscosity)
- Rust and corrosion resistance, even during shutdown
- Excellent foam control and demulsibility to shed water (fast water separation)

Lower Lifecycle Cost

- Less downtime
- Lower maintenance cost (labor and parts)
- Reduced power consumption and improved efficiency through effective cooling, minimized/no leakage, and reduced friction
- Excellent seals and materials compatibility
- Longer oil life (less oil changes and maintenance cost)

Key Functions

Foam

- ➔ Lubrication, Cooling
- ➔ Oxidation, Varnish, Sludge

Thickened Oil

- ➔ Lubrication, Cooling
- ➔ Oxidation, Varnish, Sludge

Valve Deposit

- ➔ Valve Sealing, Cooling, Efficiency
- ➔ Leakage, Restricted Flow, Wear

Varnish and Sludge

- ➔ Lubrication, Cooling, Efficiency
- ➔ Restricted Flow, Wear

Rust and Corrosion

- ➔ Sealing, Cooling, Efficiency
- ➔ Surface damage, Friction, Wear

Bearing Wear

- ➔ Cooling, Efficiency
- ➔ Friction, Vibration, Wear, Damage

<h2>BASE OIL</h2> <p>Formulation viscosity, thermal stability and oxidation resistance</p>	<h2>Rust Inhibitor</h2> <p>Ferrous metal protection</p>	<h2>Demulsifier</h2> <p>Fast water separation</p>	<h2>Seal Compatibility Agent</h2> <p>Minimizes leaks</p>
<p>A high-quality compressor lubricant is a formulated oil with different types and levels of key components designed to extend equipment life</p>	<h2>Corrosion Inhibitor</h2> <p>Ferrous and non-ferrous metal protection</p>	<h2>Foam Inhibitor</h2> <p>Foam prevention</p>	<h2>Viscosity Index Improver</h2> <p>Viscosity Stability</p>
<h2>KEY FUNCTIONS</h2>	<h2>Antiwear Additive</h2> <p>Reduced friction and wear</p>	<h2>Oxidation Inhibitor</h2> <p>Minimizes sludge, varnish, and acid formation</p>	<p>Note: Component types and levels are selected based on compressor type, gas, and application. Some components are multi-functional. Components not shown above may be included.</p>

Key Functions

MINERAL OILS

Cost-effective for less demanding applications
Frequent oil change to remove contaminants

SEMI-SYNTHETICS

Cost-effective upgrade from mineral oils with some benefits of synthetics

Key Functions

SYNTHETICS

Synthetic Hydrocarbon (PAO, Polyalphaolefin)

- Excellent oxidation resistance and thermal stability help to deliver reliable performance in severe operating conditions
- Fast water separation to minimize rust and corrosion in high moisture or humidity conditions
- Excellent low temperature properties enable optimized flow, reduced friction, and minimized wear
- Commonly co-blended with high-quality esters to enhance additive solubility and ensure seal compatibility
- Reduce operational costs by extending oil drain interval and improving efficiency

Key Functions

SYNTHETICS

Organic Esters (Diester)

- Excellent solvency and resistance to carbon formation for extending valve life in reciprocating compressors
- Excellent oxidation resistance and thermal conductivity for efficient heat transfer

Polyglycols (PAG, Polyalkylene Glycol)

- Common for natural gas compression in oil-flooded lubrication to maximize protection by minimizing gas absorption and hydrocarbon dilution
- Forms volatile or soluble degradation products upon oxidation, therefore PAG oils do not form deposits or varnish
- PAG (water-soluble) oils are not compatible with hydrocarbon-based lubricants

Application **Types**

Application Types

AIR COMPRESSION

- In 2025, air rotary screw compressors dominate the global market at approximately 28%, followed by air reciprocating compressors at approximately 19%*
- Used in industrial processes and pneumatic systems
 - Manufacturing (rotary screw, reciprocating, centrifugal)
 - Construction (rotary screw, reciprocating)

LUBRICATION

- Excellent demulsibility (fast water separation) for high moisture conditions to minimize rust and corrosion and allow easy water separation
- Excellent oxidation resistance and thermal stability to minimize sludge, varnish, deposit buildup and oil thickening
- Reciprocating air compressors require low carbon deposit formation because carbonaceous deposits may ignite at high temperatures and lead to fire or explosion
- PAO or diester oils are recommended

Application Types

NATURAL GAS COMPRESSION

- In 2025, the global natural gas compression market is approximately 18%*
- Used in oil and gas, power generation, manufacturing, transportation, and chemical industries
 - Gas transmission and distribution (reciprocating, centrifugal)
 - Gas storage (reciprocating, centrifugal, diaphragm)
 - Gas processing and power generation (reciprocating, centrifugal, rotary screw, diaphragm)

LUBRICATION

- For oil flooded lubrication, PAG (water-soluble type) oils are recommended. Their low hydrocarbon gas solubility helps to prevent viscosity drop in the pressurized section and lubricant wash away from cylinder walls that may lead to dry running and accelerated wear
- Natural gas with contaminants (sour/wet gas) such as H₂S (hydrogen sulfide) and water may require additional protection against rust and corrosion
- Please note PAG oils are not compatible with hydrocarbon-based lubricants

Application Types

REFRIGERANT COMPRESSION

- The refrigeration lubricants market is estimated at USD 3.67 billion in 2025 and is expected to reach USD 4.39 billion by 2030*
- Refrigerant lubricant market is 59% mineral oil and 41% synthetic in 2024*
- Used in air conditioning and refrigeration systems in residential, commercial, and industrial sectors
 - Household (reciprocating, rotary vane)
 - Industrial (reciprocating, rotary screw, rotary vane, centrifugal)
 - Cryogenic (reciprocating, rotary screw, centrifugal)

Application Types

LUBRICATION

- Refrigeration systems are often closed systems without oil separators. Oil and refrigerant should be miscible to ensure good oil circulation
- Lubricant with proper viscosity that will provide balanced flow at the lowest system temperature and wear protection is recommended

Refrigerant	Examples	Recommended Oils
CFC	R-12	Mineral Oils (Highly refined naphthenic or paraffinic), PAO
HCFC	R-22	Mineral Oils (Highly refined naphthenic or paraffinic), PAO
HFC	R-134a, R-410A	POE, PAG
HFO	R-1234yf	POE, PAG
Natural Refrigerant	R-717 (Ammonia)	Mineral or nonpolar synthetic oils formulated for ammonia
Natural Refrigerant	R-744 (CO ₂)	POE or PAG
Natural Refrigerant	R-290 (Propane)	Mineral Oil for older systems, PAO for modern systems
Natural Refrigerant	R-600a (Isobutane)	Mineral Oil for older systems, PAO for modern systems

PAO = Polyalphaolefin, POE = Polyolester, PAG = Polyalkylene Glycol

Application Types

VACUUM PUMP

- A traditional compressor increases pressure above atmospheric. A vacuum pump removes gas from a chamber and creates negative pressure by decreasing pressure below atmospheric
 - Both equipment convert mechanical energy into pressure energy
- Used power plants, packaging, chemical and metal processing, semiconductor and pharmaceutical industries
 - Packaging and laboratory systems (rotary vane)
 - Chemical processing and power plants (rotary liquid ring)
 - Semiconductor and pharmaceutical (rotary screw)
 - Metallurgy (rotary lobe)

LUBRICATION

- Industrial low to medium vacuum pumps (sections and moving parts) may be lubricated by the same lubricants as those for gas compressors
- For high vacuum applications, lubricants with high viscosity, high flash point, no low boiling components, and low vapor pressures at working temperatures are recommended
- Naphthenic or paraffinic mineral oils and synthetic esters are recommended

**CITGO & CLARION
Compressor Lubricants**

Where CITGO can help...

How to Select the Proper Compressor Lubricant?

Refer to owner's manual for proper lubricant recommendation

- Technical Training
- Industry Trends
- Deep Formulation and Application Expertise in Industrial Lubrication
- Comprehensive Product Lines and Cost-Effective Solutions
- World-Class Technical Service and Condition Monitoring

CITGO® & CLARION® Compressor Lubricants

AIR

Compressor Oils 35LP and 45LP
CompressorGard® PS 68
CompressorGard® PAO
CompressorGard® DE
CompressorGard® GE
Clarion® CompressorGard®

GAS

Gascom® R
Compressor Oils 35LP and 45LP
CompressorGard® 7585
CompressorGard® XA 200
CompressorGard® SS
CompressorGard® H
CompressorGard® PAG

REFRIGERANT

Ice Machine Oil 68
North Star Refrigeration Oils
CompressorGard® IPG
Clarion® Synthetic Refrigeration Fluid

HIGH VACUUM

Pacemaker® HV

Air Compression

Compressor Oils 35LP and 45LP

- Highly refined paraffinic mineral oil based lubricant
- Reciprocating compressors (cylinder lubrication) and older stationary natural gas engines with activated clay filtration
- SAE 30 and 50

CompressorGard® PS 68

- Semi-synthetic ultra high-purity based lubricant
- Rotary screw, rotary vane, and centrifugal compressors
- ISO VG 68

CompressorGard® PAO

- Synthetic PAO based lubricant
- Rotary vane, rotary screw, and centrifugal compressors
- ISO VG 32, 46, 68, 100, and 150

CompressorGard® DE

- Synthetic Diester based lubricant
- Rotary vane, rotary screw, and reciprocating compressors
- ISO VG 68, 100, 125, and 150

CompressorGard® GE

- Synthetic PAG / Alkylated Hydrocarbon based fluid
- ISO VG 32 for Sullair Rotary Screw compressors, ISO VG 46 for Ingersoll-Rand Rotary Screw compressors

Clarion® CompressorGard®

- Synthetic PAO based fluid
- NSF H1 registered for use in food processing plant. Meets US FDA regulation 21 CFR 178.3570 for incidental food contact
- Rotary vane and rotary screw compressors
- ISO VG 32, 46, 68

Gas Compression

Gascom® R Oil

- Highly refined paraffinic mineral based lubricant
- Reciprocating compressors
- Wet, scrubbed, processed gas including natural gas compression
- ISO VG 220

Compressor Oils 35LP and 45LP

- Highly refined paraffinic mineral oil based lubricant
- Reciprocating compressors (cylinder lubrication) and older stationary natural gas engines with activated clay filtration
- Natural gas compression
- SAE 30 and 50

Compressor Oil 7585

- Highly refined paraffinic mineral oil based lubricant
- Reciprocating compressors
- Sour, wet, high-pressure natural gas, high-pressure carbon dioxide, hydrogen sulfide, refinery tail gas, and wellhead gas compression
- SAE 60

CompressorGard® XA 200

- Highly refined paraffinic mineral oil based lubricant
- Reciprocating compressors
- Sour, wet, high-pressure natural gas, syngas, high-pressure wet carbon dioxide and hydrogen sulfide, high-pressure sulfur dioxide, refinery tail gas, and wellhead gas compression
- SAE 60

CompressorGard® SS

- Semi-synthetic based lubricant
- Rotary screw, rotary vane, and reciprocating compressors
- Natural gas compression
- ISO VG 100, 150, 220

CompressorGard® H

- Synthetic PAO based lubricant
- Reciprocating compressors
- Natural gas, H₂, and sour gas compression
- ISO VG 100, 220

CompressorGard® PAG

- Synthetic PAG based lubricant
- Rotary screw, rotary vane, and reciprocating compressors
- Natural gas, CO₂, H₂, He, N₂, NH₃, and others
- Minimizes gas absorption and hydrocarbon dilution
- ISO VG 100, 150, 220

Refrigerant **Compression**

Ice Machine Oil 68

- Highly refined paraffinic mineral oil based lubricant
- Rotary screw and reciprocating compressors and industrial evaporating ice machines
- Ammonia compression
- ISO VG 68

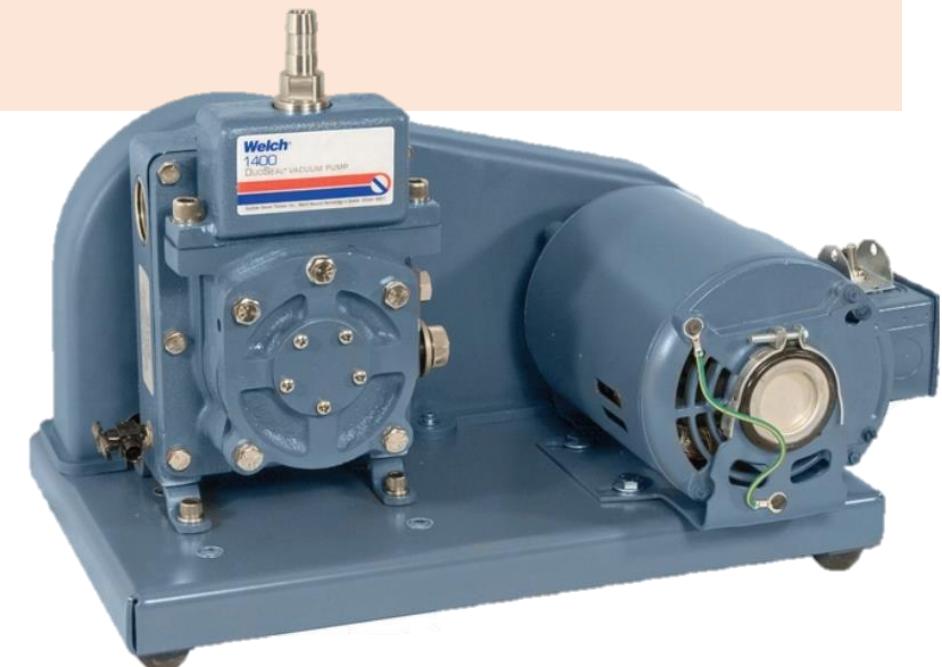
North Star® Refrigeration Oils

- Highly refined mineral oil based lubricant
- Air conditioner and refrigeration compressors where low temperature fluidity is required
- Not recommended for R-134a
- ISO VG 54 (naphthenic) and 68 (paraffinic)

CompressorGard® IPG

- Synthetic polyglycol based lubricant
- Rotary screw, rotary vane, and reciprocating compressors
- Propane compression
- ISO VG 100, 150

Clarion® Synthetic Refrigeration Fluid

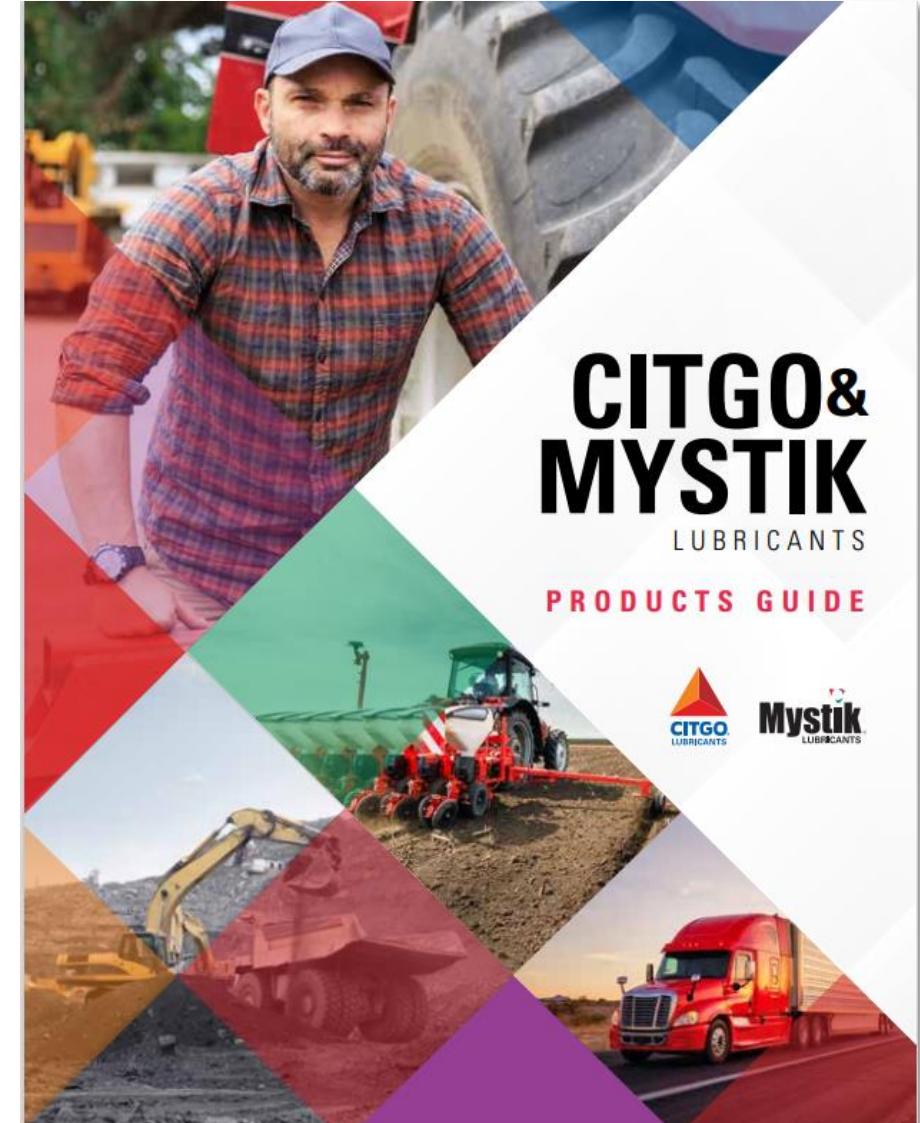

- Synthetic PAO based lubricant
- NSF H1 registered for use in food processing plant. Meets US FDA regulation 21 CFR 178.3570 for incidental food contact
- Rotary screw compressors
- Ammonia, CO₂, CFC, and HCFC compression. Not recommended for R-134a
- ISO VG 68

High-Vacuum Pump

Pacemaker® HV Oils

- Highly refined paraffinic mineral oil based lubricant
- High-vacuum pumps
- HV-39 is for direct-drive vacuum pumps such as Welch, Yellow Jacket, Precision, Leybold-Heraeus, Edwards and Alcatel
- HV-68 is for belt-driven vacuum pumps such as Welch and Cenco
- ISO VG 39 and 68

OEM Cross Reference


Air Compressor OEM Fluid Cross-References

Compressor OEM Fluid Cross-reference

OEM	Product Name	CITGO Product Name	Mat. Code	Competitive Product Co
Atlas Copco	Atlas Copco HD Roto Fluid	CompressorGard PAO 46	632532001	Mineral Special Processed Oil, ISO 46
	Atlas Copco HD Roto Fluid Plus	CompressorGard PAO 46	632532001	Group III, ISO 46
	Atlas Copco Paroil M	CompressorGard PAO 46	632532001	Mineral Oil, anti-wear, ISO 46
	Atlas Copco Paroil S 46	CompressorGard PAO 46	632532001	PAO, ISO 46
	Atlas Copco Paroil S 68	CompressorGard PAO 68	632533001	PAO, ISO 68
	Atlas Copco Roto-H Plus	CompressorGard PAO 32	632531001	Mineral oil, ISO 32
	Atlas Copco Roto-Inject	CompressorGard PAO 46	632532001	Ashless, AW mineral oil, ISO 46
	Atlas Copco Roto Xtend Duty Fluid	CompressorGard PAO 46	632532001	PAO, ISO 46
	Atlas Copco Roto Xtreme Duty Fluid	No Product		Polyol Ester, ISO 46

Compressor OEM Fluid Cross-reference - (Cont'd.)

OEM	Product Name	CITGO Product Name	Mat. Code	Competitive Product Co
Gardner Denver	Gardner Denver Aeon 500	CompressorGard PAO 100	632534001	Mineral oil, ISO 100 - for reciprocating compressors
	Gardner Denver Aeon 800	CompressorGard PAO 46	632532001	R&O, Mineral oil, ISO 46 - for rotary screw compressors
	Gardner Denver Aeon 2000	CompressorGard PAO 46	632532001	R&O Mineral oil, ISO 46
	Gardner Denver Aeon 4000	CompressorGard PAO 46	632532001	Mineral/synthetic blend, ISO 46
	Gardner Denver Aeon 5000	CompressorGard DE 68	632525001	Dester, ISO 68 - for reciprocating compressors
	Gardner Denver Aeon 6000 FG	Clarion CompressorGard 46	632541009	USDA H1, FDA 21CFR 178.3570, PAO, ISO 46
	Gardner Denver Aeon 9000 SP	CompressorGard PAO 46	632532001	PAO, ISO 46

Used Oil Analysis **Review**

Benefits of Used Oil Analysis

- Track Equipment Condition Trends
- Increase Operational Efficiency and Production
- Decrease Maintenance Costs
- Decrease Unexpected Downtime
- Increase Equipment Resale Value
- Optimize Lubricant Useable Life

How to Optimize Compressor Life...

Sample monthly to track trends

Condemn based on complementary data points

Take Action:

- Based on trends
- At or near condemning limits

Monitor:

- Viscosity
- Water
- Metals
- Acid Number
- Oxidation
- Particle Count

...with Used Oil Analysis

Used Oil Analysis Data Ranges

Compressors

Property	Start Flagging	Condemn
Viscosity	+/- 10% change	+/- 25% change
Water (wt%)	0.2 = 2000 ppm	0.5 = 5000 ppm
Iron (ppm)	5	10
Other Metals (ppm)	2	5
Acid Number (mgKOH/g)	+0.5	+1
Oxidation (abs/.01mm)	20	25
Particle Count (ISO 4406 Code)	16/14/11	>18/16/13

Natural Gas Screw Compressor – Gas Dilution

ISO 150 Fluid

Metals (ppm)							
Iron (Fe)	4	5	4	4	2	4	
Chromium (Cr)	<1	<1	<1	<1	<1	<1	
Lead (Pb)	<1	1	<1	<1	<1	<1	
Copper (Cu)	<1	<1	<1	<1	<1	<1	
Tin (Sn)	<1	<1	<1	<1	<1	<1	
Aluminium (Al)	1	<1	<1	1	2	1	
Nickel (Ni)	<1	<1	<1	1	<1	<1	
Silver (Ag)	<1	<1	<1	<1	<1	<1	
Titanium (Ti)	<1	<1	<1	<1	<1	<1	
Vanadium (V)	<1	<1	<1	<1	<1	<1	
Contaminants (ppm)							
Silicon (Si)	<1	<1	<1	<1	<1	<1	
Sodium (Na)	<1	<1	<1	<1	<1	<1	
Potassium (K)	<1	<1	<1	<1	<1	<1	
Physical Tests							
Additional	Viscosity (cSt 40C)	104.0	118.0	111.0	138.0	44.5	46.6
Material							
Calcium (Ca)	10	8	8	7	13	14	
Barium (Ba)	<1	<1	<1	<1	2	<1	
Phosphorus (P)	80	76	77	68	208	209	
Zinc (Zn)	7	5	4	7	6	3	
Molybdenum (Mo)	<1	1	<1	1	<1	<1	
Boron (B)	<5	<5	<5	<5	<5	<5	
Contaminants							
Water (%)	<.1	<.1	<.1	<.1	<.1	<.1	
Physical Tests							
Viscosity (cSt 40C)	104.0	118.0	111.0	138.0	44.5	46.6	
Physical / Chemical							
Acid Number (mgKOH/g)	0.07	0.06	0.07	0.02	0.04	0.04	
Oxidation (Abs/0.1mm)	12	12	11	11	18	18	
E2412/D7414							
Nitration (Abs/0.1mm) E2412	4	4	2	2	4	3	
Additional							
Antimony	<1	<1	2	1	<1	<1	

Data trends
from right to left

Polyalkylene Glycol in Screw Compressor

ISO 220

Metals (ppm)

Iron (Fe)
Lead (Pb)
Copper (Cu)
Tin (Sn)
Aluminium (Al)
Silver (Ag)

6	7	9
1	<1	1
8	14	18
4	6	7
1	1	2
<1	<1	<1

Shaft and Bearing Wear;
Possible Fluid Cooler Leak

Contaminants (ppm)

Silicon (Si)
Sodium (Na)
Potassium (K)

18	19	19
22	7	4
25	16	8

Water Jacket or
Fluid Cooler Leak

Additives (ppm)

Magnesium (Mg)
Calcium (Ca)
Phosphorus (P)
Zinc (Zn)
Molybdenum (Mo)
Boron (B)

<1	<1	<1
1	<1	1
1399	1603	1510
2	1	1
<1	<1	1
<5	<5	<5

Contaminants

Water (%)

<.1	<.1	<.1
-----	-----	-----

PAG fluids maintain
viscosity with "wet" gas

Physical Tests

Viscosity (cSt 40C)

221.0	220.0	222.0
-------	-------	-------

Physical / Chemical

Acid Number (mgKOH/g)

0.85	1.01	1.02
------	------	------

Oxidation (Abs/0.1mm)

3	5	5
---	---	---

E2412/D7414

4	5	6
---	---	---

Nitration (Abs/0.1mm) E2412

Data trends from
right to left

Natural Gas Screw Compressor

Engine Oil in Comp Fluid

Metals (ppm)	7	9	7	6	4
Iron (Fe)	7	<1	<1	<1	<1
Chromium (Cr)		<1	<1	<1	<1
Lead (Pb)	<1	<1	<1	<1	<1
Copper (Cu)	<1	1	1	<1	<1
Tin (Sn)	<1	1	<1	<1	<1
Aluminium (Al)	<1	<1	<1	<1	2
Nickel (Ni)	<1	<1	<1	<1	<1
Silver (Ag)	<1	<1	<1	<1	<1
Titanium (Ti)	<1	<1	<1	<1	<1
Vanadium (V)	<1	<1	<1	<1	<1
Contaminants (ppm)					
Silicon (Si)	1	<1	<1	1	
Sodium (Na)	32	23	18	17	14
Potassium (K)	<1	<1	<1	<1	<1
Additives (ppm)					
Magnesium (Mg)	7	6	6	5	4
Calcium (Ca)	97	73	62	52	40
Barium (Ba)	<1	<1	<1	<1	<1
Phosphorus (P)	44	46	42	42	43
Zinc (Zn)	18	11	8	8	9
Molybdenum (Mo)		1	1	<1	<1
Boron (B)	<5	<5	<5	<5	<5
Contaminants					
Water (%)	<.1	<.1	<.1	<.1	<.1
Physical Tests					
Viscosity (cSt 40C)	114.0	113.0	112.0	113.0	110.0
Physical / Chemical					
Acid Number (mgKOH/g)	0.22	0.09	0.11	0.08	0.13
Oxidation (Abs/0.1mm)	25	20	20	20	19
E2412/D7414					
Nitration (Abs/0.1mm) E2412	3	2	2	2	2
Additional					
Antimony	<1	<1	<1	<1	<1

Metals (ppm)

Iron (Fe)	7
Chromium (Cr)	<1
Lead (Pb)	<1
Copper (Cu)	<1
Tin (Sn)	<1
Aluminium (Al)	<1
Nickel (Ni)	<1
Silver (Ag)	<1
Titanium (Ti)	<1
Vanadium (V)	<1

Contaminants (ppm)

Silicon (Si)	1
Sodium (Na)	32
Potassium (K)	<1

Additives (ppm)

Magnesium (Mg)	7
Calcium (Ca)	97
Barium (Ba)	<1
Phosphorus (P)	44
Zinc (Zn)	18
Molybdenum (Mo)	<1
Boron (B)	<5

Contaminants

Water (%)	<.1
-----------	-----

Physical Tests

Viscosity (cSt 40C)	114.0
---------------------	-------

Physical / Chemical

Acid Number (mgKOH/g)	0.22
Oxidation (Abs/0.1mm)	25

Data trends from right to left

Rotary Screw Air Compressor

Water

Metals (ppm)

Iron (Fe)	1	<1	<1	7	<1	<1
Chromium (Cr)	<1	<1	<1	<1	<1	<1
Lead (Pb)	<1	<1	<1	<1	<1	<1
Copper (Cu)	2	4	3	6	6	5
Tin (Sn)	<1	<1	1	<1	<1	<1
Aluminium (Al)	<1	1	1	<1	<1	<1

Contaminants

Water (%)

<.1

0.85

0.19

0.21

Contaminants (ppm)

Silicon (Si)	2	<1	<1	<1	<1	2
Sodium (Na)	<1	<1	<1	1	<1	<1
Potassium (K)	<1	1	<1	<1	1	<1

Additives (ppm)

Magnesium (Mg)	<1	<1	<1	<1	<1	<1
Calcium (Ca)	1	2	<1	<1	<1	3
Barium (Ba)	<1	<1	<1	<1	<1	<1
Phosphorus (P)	221	175	191	183	157	185
Zinc (Zn)	7	11	7	6	6	7
Molybdenum (Mo)	<1	<1	<1	<1	<1	<1
Boron (B)	<5	<5	<5	<5	<5	<5

Contaminants

Water (%)

<.1

0.85

0.19

0.21

<.1

<0.05

Physical Tests

Viscosity (cSt 40C)

32.5

33.0

32.8

33.7

34.2

33.7

Additional

Antimony

1

1

<1

2

1

1

Data trends from right to left

Reciprocating Natural Gas Compressor With Engine Oil

Metals (ppm)	1	2	3	4	5	6
Iron (Fe)	2	2				
Chromium (Cr)	<1	<1				
Lead (Pb)	<1	<1				
Copper (Cu)	<1	<1				
Tin (Sn)	<1	<1				
Aluminium (Al)	2	3				
Nickel (Ni)	<1	<1				
Silver (Ag)	<1	<1				
Titanium (Ti)	<1	<1				
Vanadium (V)	<1	<1				
Contaminants (ppm)	2	2				
Silicon (Si)	2	2				
Sodium (Na)	<1	<1				
Potassium (K)	<1	<1				
Additives (ppm)	8	8				
Magnesium (Mg)	8	8				
Calcium (Ca)	1214	1272				
Barium (Ba)	<1	<1				
Phosphorus (P)	275	284				
Zinc (Zn)	329	342				
Molybdenum (Mo)	1	1				
Boron (B)	<5	<5				
Contaminants						
Water (%)						<1
Physical Tests						
Viscosity (cSt 40C)						125.0
Physical / Chemical						
Acid Number (mgKOH/g)						0.53

Data trends from
right to left

Reciprocating Natural Gas Compressor Wear Metals

Metals (ppm)	7	7	20	6	8	3
Iron (Fe)	7	7	20	6	8	3
Chromium (Cr)	<1	<1	<1	<1	<1	<1
Lead (Pb)	2	2	4	1	4	2
Copper (Cu)	7	7	29	5	20	10
tin (Sn)	<1	<1	<1	<1	<1	<1
Aluminium (Al)	2	<1	1	<1	<1	1
Nickel (Ni)	<1	<1	<1	<1	<1	<1
Silver (Ag)	<1	<1	<1	<1	<1	<1
Titanium (Ti)	<1	<1	1	<1	<1	<1
Vanadium (V)	<1	<1	<1	<1	<1	<1
Contaminants (ppm)	2	3	5	3	2	2
Silicon (Si)	2	3	5	3	2	2
Sodium (Na)	3	3	5	3	2	1
Potassium (K)	1	<1	<1	<1	<1	<1
Additives (ppm)	5	5	6	6	7	7
Magnesium (Mg)	5	5	6	6	7	7
Calcium (Ca)	1136	1184	1166	1216	1104	1141
Barium (Ba)	<1	<1	<1	<1	<1	<1
Phosphorus (P)	261	271	276	263	262	261
Zinc (Zn)	313	326	317	329	306	314
Molybdenum (Mo)	1	1	1	1	1	1
Boron (B)	<5	<5	<5	<5	<5	<5
Contaminants						
Water (%)	<0.05	<.1	<.1	<.1	<.1	<.1
Physical Tests						
Viscosity (cSt 100C)	11.0	11.5	12.0	12.3	10.1	11.4
Additional						
Antimony	<1	<1	<1	<1	<1	<1

Data trends from right to left

Centrifugal Air Compressor Particle Count

Metals (ppm)	1	1	1	<1
Iron (Fe)	1	1	1	<1
Chromium (Cr)	<1	<1	<1	<1
Lead (Pb)	<1	1	<1	<1
Copper (Cu)	<1	<1	<1	<1
Tin (Sn)	1	<1	<1	<1
Aluminium (Al)	<1	<1	<1	<1
Nickel (Ni)	<1	<1	<1	<1
Silver (Ag)	<1	<1	<1	<1
Titanium (Ti)	<1	<1	<1	<1
Vanadium (V)	<1	<1	<1	<1
Contaminants (ppm)				
Silicon (Si)	1	<1	1	<1
Sodium (Na)	<1	<1	<1	<1
Potassium (K)	<1	<1	<1	1
Additives (ppm)				
Magnesium (Mg)	<1	<1	<1	<1
Calcium (Ca)	<1	1	1	2
Barium (Ba)	<1	<1	1	<1
Phosphorus (P)	3	3	7	4
Zinc (Zn)	2	4	1	3
Molybdenum (Mo)	<1	<1	<1	<1
Boron (B)	<5	<5	<5	<5
Contaminants				
Water by Karl Fischer %	0	0	0.001	0
Physical Tests				
Viscosity (cSt 40C)	33.0	32.7	33.1	34.0
Physical / Chemical				
Acid Number (mgKOH/g)	0.01	0.01	0.01	0.01
Particle Count				
ISO 4406 Rating	16/14/11	33.0	33.0	33.0
> 4 Micron (particles/ml)	366			
> 6 Micron (particles/ml)	134			
> 14 Micron (particles/ml)	16			
> 21 Micron (particles/ml)	4			
> 38 Micron (particles/ml)	<1			
Additional				
Antimony	<1	<1	<1	<1

Physical Tests

Viscosity (cSt 40C)

33.0

Physical / Chemical

Acid Number (mgKOH/g)

0.01

Particle Count

ISO 4406 Rating

16/14/11

> 4 Micron (particles/ml)

366

> 6 Micron (particles/ml)

134

> 14 Micron (particles/ml)

16

> 21 Micron (particles/ml)

4

> 38 Micron (particles/ml)

<1

Data trends from
right to left

Rotary Vane Vacuum Pump

SAE 30

Metals (ppm)	
Iron (Fe)	5
Chromium (Cr)	<1
Lead (Pb)	1
Copper (Cu)	<1
Tin (Sn)	1
Aluminium (Al)	1
Nickel (Ni)	<1
Silver (Ag)	<1
Titanium (Ti)	<1
Vanadium (V)	<1

Contaminants (ppm)	
Silicon (Si)	8
Sodium (Na)	7
Potassium (K)	1

Additives (ppm)	
Magnesium (Mg)	602
Calcium (Ca)	821
Barium (Ba)	<1
Phosphorus (P)	724
Zinc (Zn)	770
Molybdenum (Mo)	39
Boron (B)	12

Contaminants

Water by Karl Fischer %

0.062

Physical Tests

Viscosity (cSt 100C)

12.6

Physical / Chemical

Acid Number (mgKOH/g)

1.63

Particle Count

ISO 4406 Rating

24/23/19

> 4 Micron (particles/ml)

126760

> 6 Micron (particles/ml)

68711

> 14 Micron (particles/ml)

4947

> 21 Micron (particles/ml)

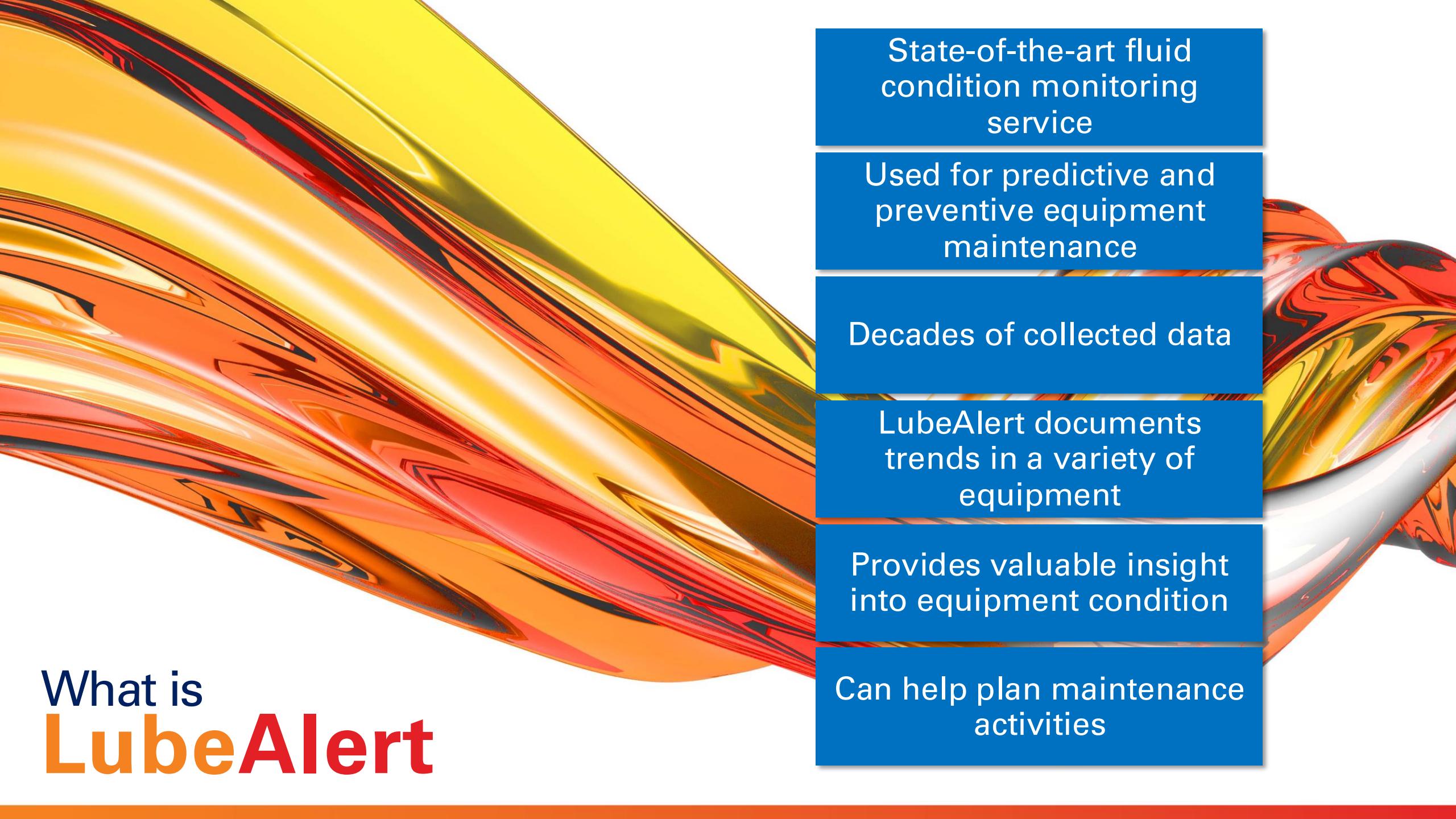
869

> 38 Micron (particles/ml)

66

Additional

Antimony


2

- Oil Flooded Vacuum Pump
- Viscosity High for SAE 30
- High Particle Count
- Particles from Vane to Rotor Contact
- Moist/Salty Air Intake
- Not Suitable for continued use

LubeAlert®

Fluid Condition Monitoring Service

What is **LubeAlert**

State-of-the-art fluid condition monitoring service

Used for predictive and preventive equipment maintenance

Decades of collected data

LubeAlert documents trends in a variety of equipment

Provides valuable insight into equipment condition

Can help plan maintenance activities

SHOP
PRINT STORE

GO \$ FOR THE
GREEN

2026
LUBRICANTS
PROGRAMS
GUIDE

MARKETER
COUNCIL
INFORMATION

AUTOMOTIVE
LUBRICANTS
PROGRAM

Webinars
CLICK TO REGISTER

Lubes Advisor

Learn About
LubeAlert

LubeAssure

PRODUCT
CROSS
REFERENCE

SOCIAL MEDIA
TOOLKIT

GREASE
TOOLKIT

JUST TRY IT

PC-12
TRUCK STOP

VEKTOR PARTNER

MARKETNET 2.0
ORDERING PORTAL

Click

LubeAlert on MarketNet

CITGO LubeAlert® Fluid Condition Monitoring Service - Flexible, Responsive and Quality Driven

The CITGO LubeAlert® Fluid Condition Monitoring Service is a tool used for predictive and preventative equipment maintenance. LubeAlert provides state-of-the-art oil analysis methods for engines, compressors, hydraulic systems, gears, turbines and many other lubricated components used in a variety of industries. With decades of collected data, trends can be generated for a variety of equipment. With WebTrieve for LubeAlert, customers can gain valuable insight into equipment and fluid condition, and plan maintenance activities. For more information, check out the [FAQs](#), review the [LubeAlert Program Guide](#), and review the [Sample Submission Guide](#) to learn how to submit samples for analysis.

LubeAlert Test Packages

Five Tiers

Component Based Menu

Shipping Bundles

Add-on Tests

LubeAlert

Test Packages

LubeAlert BASIC	Elemental Metals by ICP	Fuel Soot %	Fuel Dilution %	Water by Crackle	Viscosity @ 40	Viscosity @ 100	Acid Number	Base Number by FTIR	Ox/Nit/Sul by FTIR	Particle Count	Particle Quantification Index	Test Package Tier Level
	ASTM D5185	ASTM D7844	Viscosity Shift ASTM D7593	Crackle or ASTM D6304	ASTM D445	ASTM D445	ASTM D664	ASTM E2412	ASTM E2412	ASTM D7647	ASTM D8184	
Diesel Engine	X	X	X	X		X		X	X			Tier 1
Gasoline Engine	X			X		X		X	X			
Transmission	X			X		X			X			
Differential	X			X		X			X			
Stationary Gas Engine	X			X		X	X		X			Tier 2
All Gearboxes	X			X	X		X		X			
Natural Gas Compressor	X			X	X		X		X			
Air Compressor	X			X	X		X		X			
Refrigeration Compressor	X			X	X		X		X			
Industrial Hydraulics	X			X	X		X		X			
Bearings	X			X	X		X		X			
Gas Turbine	X			X	X		X		X			

LubeAlert BASIC

- Tier 1
- Tier 2

LubeAlert

Test Packages

LubeAlert ADVANCED	Elemental Metals by ICP	Fuel Soot %	Fuel Dilution %	Water by Crackle	Viscosity @ 40	Viscosity @ 100	Acid Number	Base Number by FTIR	Ox/Nit/Sul by FTIR	Particle Count	Particle Quantification Index	Test Package Tier Level
	ASTM D5185	ASTM D7844	Viscosity Shift ASTM D7593	Crackle or ASTM D6304	ASTM D445	ASTM D445	ASTM D664	ASTM E2412	ASTM E2412	ASTM D7647	ASTM D8184	
Diesel Engine	X	X	X	X		X		X	X		X	Tier 3
Gasoline Engine	X			X		X	X	X	X		X	
Stationary Gas Engine	X			X		X	X	X	X		X	
Transmission	X			X		X	X		X		X	
Differential	X			X		X	X		X		X	
All Gearboxes	X			X	X		X		X		X	
Natural Gas Compressor	X			X	X		X		X		X	Tier 4
Air Compressor	X			X	X		X		X		X	
Refrigeration Compressor	X			X	X		X		X		X	
Industrial Hydraulics	X			X	X		X		X		X	
Bearings	X			X	X		X		X		X	
Gas Turbine	X			X	X		X		X		X	

LubeAlert ADVANCED

- Tier 3
- Tier 4

LubeAlert

Test Packages

LubeAlert ADVANCED	Elemental Metals by ICP	Glycol Contamination	iPh	Water by Crackle	Viscosity @ 40	Viscosity @ 100	Acid Number	Base Number by FTIR	Ox/Nit/Sul by FTIR	Particle Count	Particle Quantification Index	Test Package Tier Level
	ASTM D5185	ASTM D2982	ASTM D7946	Crackle or ASTM D6304	ASTM D445	ASTM D445	ASTM D664	ASTM E2412	ASTM E2412	ASTM D7647	ASTM D8184	
Landfill/Biogas Gas Engine	X	X	X	X		X	X	X	X	X	X	Tier 5

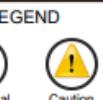
LubeAlert ADVANCED

- Tier 5

LubeAlert

Data Reports

- Baseline reference data
- EPA RICE NESHAP monitoring
- Competitive comparisons
- Diagnostician Comments
- Severity Flagging
- Trend Graphs


UIN 023A9C4

Diesel Engine	
Unit No.	Demo unit 1
Unit:	
Make	
Model	
Serial No.	7821154
Site	
Compartment:	
Name	
Make	
Model	
Serial No.	
Capacity:	60.0 Ltrs

Customer:	
Demo Report	
DIAGNOSIS	
Demo report	

ANALYST: Data.Loader				
 Normal	 Severe	 Abnormal	 Caution	 Normal

DATE SAMPLED	10-Nov-12	02-Oct-12	08-Aug-12
DATE RECEIVED	14-Jan-13	05-Dec-12	12-Oct-12
DATE REPORTED	16-Jan-13	07-Dec-12	17-Oct-12
LAB NO.	80000153891	80000153885	80000153881
SIF NO.	13687092	13687086	13687082
TIME ON UNIT	Hrs	9302	50516
TIME ON OIL	Hrs	500	500
OIL BRAND			
OIL TYPE			
OIL GRADE	SAE 40	SAE 40	SAE 40
OIL ADDED			
FILTER			
OIL CHANGED	Not Changed	Not Changed	Not Changed
WO NUMBER			

Metals (ppm)			
Iron (Fe)	6	6	8
Chromium (Cr)	<1	<1	<1
Lead (Pb)	1	2	1
Copper (Cu)	2	2	2
Tin (Sn)	<1	<1	1
Aluminium (Al)	1	1	2
Nickel (Ni)	<1	<1	<1
Silver (Ag)	<1	<1	<1
Vanadium (V)	<1	<1	<1

Contaminants (ppm)			
Silicon (Si)	3	3	6
Sodium (Na)	2	<1	16
Potassium (K)	<5	<5	8
Water (%)	Not Detected	Not Detected	0.10

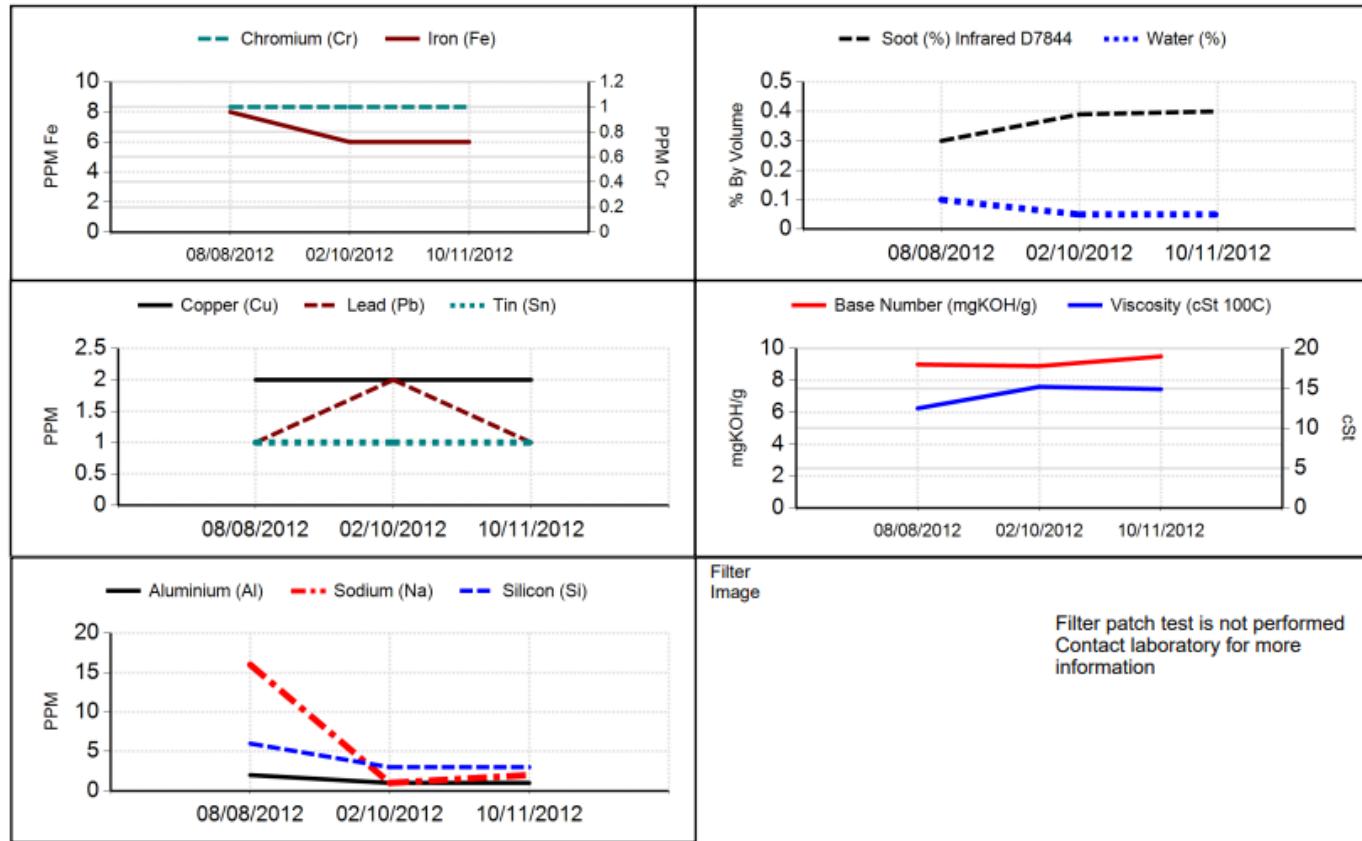
Additives (ppm)			
Magnesium (Mg)	7	7	8
Calcium (Ca)	2952	2796	2742
Barium (Ba)	<1	<1	<1
Phosphorus (P)	42	40	38
Molybdenum (Mo)	43	36	31
Boron (B)	<5	<5	<5

Physical Tests			
Viscosity (cSt 100C)	14.9	15.2	12.5
Soot (%) Infrared D7844	0.4	0.3	0.3
PQ Index	<10	<10	833

Physical / Chemical			
Base Number (mgKOH/g)	9.5	8.9	9.0
Oxidation (Abs/0.1mm) E2412/D7414	13	8	5

Page 1 of 2

LubeAlert


Data Reports

(844) 669-5608

UIN 033A9B4

- Baseline reference data
- EPA RICE NESHAP monitoring
- Competitive comparisons
- Diagnostician Comments
- Severity Flagging
- Trend Graphs

Since services are based on samples and information supplied by others, and since corrective actions, if any, are necessarily taken by others, these services are rendered without any warranty or liability of any kind beyond the actual amount paid to ALS Tribology for the services. Reported recommendations are based on interpretations of the generated test results and historical data. Certain test results appearing in this report may have been tested at other ALS laboratories within the Tribology divisional network.

0487 v1.1

U.S. Laboratories

Atlanta, Georgia - 420

5300 OakBrook Parkway
Building 200 Suite 245
Norcross, GA 30093

Valley View, Ohio - 410

6180 Halle Dr. Suite D
Valley View, OH 44125

Kansas City, Kansas - 430

935 Sunshine Road
Kansas City, KS 66115

Phoenix, Arizona - 440

3319 West Earl Drive
Phoenix, AZ 85017

Portland, Oregon - 401

4943 NW Front Avenue
Portland, OR 97210

Canadian Laboratories

Burlington, Ontario - 450

5036 South Service Rd.
Burlington, ON L7L5Y7

Edmonton, Alberta - 402

9450 17 Ave NW
Edmonton, AB T6N 1M9

International Locations

Australia

Brisbane, Perth, Sydney,
Muswellbrook

Europe

Prague

New Zealand

Wellington

South America

Santiago de Chile,
Belo Horizonte, Brazil

Southeast Asia

Kuala Lumpur, Singapore

Contact LubeAlert®

Phone: (844) 669-5608

Email: lubealert@alsglobal.com

Website: www.lubealert.com

Questions?

Please post your
questions using the
Q&A function.

For technical inquiries or issues:
Lubes Answer Line 800-248-4684
lubeshelp@citgo.com

CITGO[®]
LUBRICANTS

Thank You!
See you next time

